Concentration and Asymmetry in Air Power Lessons for the defensive employment of small air forces

Ian Horwood, Niall MacKay & Christopher Price

THE UNIVERSITY of York

What do the **historical data** tell us about the nature of concentration in air combat?

What do the **historical data** tell us about the nature of concentration in air combat?

What can a **historical analysis** tell us about the implications for tactical and operational principles?

The **aimed-fire** model: G(t) Green units fight R(t) Red units.

$$\frac{dG}{dt} = -rR$$

Green's instantaneous loss-rate is proportional to Red numbers

$$\frac{dR}{dt} = -gG$$

and vice versa.

The **aimed-fire** model: G(t) Green units fight R(t) Red units.

$$\frac{dG}{dt} = -rR$$

Green's instantaneous loss-rate is proportional to Red numbers

$$\frac{dR}{dt} = -gG$$

and vice versa. Divide:

$$\frac{dR}{dG} = \frac{gG}{rR}$$
 or $rR dR = gG dG$

and integrate:

$$\frac{1}{2}rR^2 = \frac{1}{2}gG^2 + \text{constant}$$

throughout the battle, the Square Law.

The constancy of

$$rR^2 - gG^2$$

tells us how to combine numbers (R, G) and effectiveness (r, g).

The constancy of

$$rR^2 - gG^2$$

tells us how to combine numbers (R, G) and effectiveness (r, g).

Numbers win:

suppose we begin with twice as many Reds as Greens, $R_0=2G_0$, but that Greens are three times more effective, g=3r . Then

$$rR^2 - gG^2 = r(2G_0)^2 - 3rG_0^2 = rG_0^2 > 0,$$

and Red wins: the battle ends with G = 0, $R = G_0$.

The constancy of

$$rR^2 - gG^2$$

tells us how to combine numbers (R, G) and effectiveness (r, g).

Numbers win:

suppose we begin with twice as many Reds as Greens, $R_0=2\,G_0$, but that Greens are three times more effective, g=3r . Then

$$rR^2 - gG^2 = r(2G_0)^2 - 3rG_0^2 = rG_0^2 > 0,$$

and Red wins: the battle ends with G = 0, $R = G_0$.

Concentration is good:

If Red divides its forces, and Green fights each half in turn, Green wins the first battle, with $\sqrt{2/3} \simeq 80\%$ of G_0 remaining, Green wins the second battle, with $\sqrt{1/3} \simeq 60\%$ of G_0 remaining.

Generalized scaling laws for air combat

Fit loss-rates to powers of own and enemy numbers:

$$\frac{dG}{dt} = -rR^{r_1}G^{g_2} \qquad \frac{dR}{dt} = -gG^{g_1}R^{r_2}$$

Generalized scaling laws for air combat

Fit loss-rates to powers of own and enemy numbers:

$$\frac{dG}{dt} = -rR^{r_1}G^{g_2} \qquad \frac{dR}{dt} = -gG^{g_1}R^{r_2}$$

Divide, re-arrange, integrate: we find that

$$\frac{r}{\rho}R^{\rho}-\frac{g}{\gamma}G^{\gamma}$$
.

is constant, where $\rho = 1 + r_1 - r_2$ and $\gamma = 1 + g_1 - g_2$

Generalized scaling laws for air combat

Fit loss-rates to powers of own and enemy numbers:

$$\frac{dG}{dt} = -rR^{r_1}G^{g_2} \qquad \frac{dR}{dt} = -gG^{g_1}R^{r_2}$$

Divide, re-arrange, integrate: we find that

$$\frac{r}{\rho}R^{\rho}-\frac{g}{\gamma}G^{\gamma}$$
.

is constant, where $\rho = 1 + r_1 - r_2$ and $\gamma = 1 + g_1 - g_2$, the **exponents**, capture the conditions of battle:

- Green should concentrate its force if $\gamma > 1$, divide if $\gamma < 1$.
- if $\rho > \gamma$ then Green has a defender's advantage, by a factor ρ/γ

The crucial tactical relationship is

$$\frac{dG}{dR} = \frac{r}{g} \frac{R^{\rho-1}}{G^{\gamma-1}} \,.$$

If the dynamics are **symmetric**, $\rho = \gamma$, we can ask:

How does the **loss ratio** dG/dR depend on the **force ratio** R/G?

The crucial tactical relationship is

$$\frac{dG}{dR} = \frac{r}{g} \frac{R^{\rho-1}}{G^{\gamma-1}} \,.$$

If the dynamics are **symmetric**, $\rho = \gamma$, we can ask:

How does the **loss ratio** dG/dR depend on the **force ratio** R/G ?

Two obvious possibilities are

Lanchester's square law: simple proportionality, $\rho = \gamma = 2$

Lanchester's linear law: no dependence

'The dependence of the casualty exchange ratio on the force ratio is not linear; it is exponential'

- Col. John Warden, USAF, The Air Campaign

Cites a 1970 study of Korea and WW2.

'The dependence of the casualty exchange ratio on the force ratio is not linear; it is exponential'

- Col. John Warden, USAF, The Air Campaign

Cites a 1970 study of Korea and WW2.

Well, no.

NJM, Is air combat Lanchestrian?, MORS Phalanx 44, no. 4 (2011) 12-14

The loss ratio: Battle of Britain

 $\log dG/dR \text{ vs } \log R/G$

G=Luftwaffe, R=Royal Air Force

The loss ratio: Pacific air war

 $\log dG/dR vs \log R/G$

G=Americans, R=Japanese

The loss ratio: Korea

 $\log dG/dR vs \log R/G$

G=Americans, R=KPAF/Chinese

Air combat does not obey the square law.

Air combat does not obey the square law.

To the extent to which it obeys a symmetric Lanchester law, it is approximately **linear-law**.

Air combat does not obey the square law.

To the extent to which it obeys a symmetric Lanchester law, it is approximately **linear-law**.

But air combat is asymmetric.

Battle of Britain: RAF losses

Battle of Britain: RAF losses

Hooray for Lanchester!

Battle of Britain: Luftwaffe losses

Battle of Britain: Luftwaffe losses

Not so good.

G and R are highly correlated (0.74):

and so the overall powers in the loss-rates, g_1+r_2 and r_1+g_2 , are better-determined than their constituents: variation is less significant along the lines of constant g_1+r_2 and r_1+g_2 than orthogonal to them.

When $g_1 + r_2 \neq 1$ or $r_1 + g_2 \neq 1$, autonomous battles ('raids') should not be aggregated into daily data.

If they are, the effect is to push the overall powers $g_1 + r_2$ and $r_1 + g_2$ away from their true values and towards one, and to reduce the quality of the fit.

Example: $y = x^2$

has $\log y = 2 \log x$, of course.

Example: $y = x^2$ and sums of these: e.g. not only (3,9) but also (1+2,1+4) = (3,5) and (1+1+1,1+1+1) = (3,3).

and the best fit is now log $y = 1.5 \log x$, with $\Sigma R^2 = 0.6$.

Upshot: asymmetry is typically greater than the data suggest.

The Battle of Britain: Overall

$$\begin{split} \frac{d\,\textit{R}}{dt} &= -g\,\textit{G}^{1.12\pm0.17}\textit{R}^{0.18\pm0.25}\,, \qquad \frac{d\,\textit{G}}{dt} = -\textit{r}\,\textit{R}^{0.00\pm0.25}\,\textit{G}^{0.86\pm0.18} \\ \text{has } \gamma &\equiv 1 + g_1 - g_2 \simeq 1.3, \; \rho \equiv 1 + \textit{r}_1 - \textit{r}_2 \simeq 0.8. \end{split}$$

The Battle of Britain: Overall

$$\frac{dR}{dt} = -gG^{1.12\pm0.17}R^{0.18\pm0.25}, \qquad \frac{dG}{dt} = -rR^{0.00\pm0.25}G^{0.86\pm0.18}$$

has
$$\gamma \equiv 1 + g_1 - g_2 \simeq 1.3$$
, $\rho \equiv 1 + r_1 - r_2 \simeq 0.8$.

More accurate are the differences of $g_1 + r_2$ or $r_1 + g_2$ from one:

$$g_1 + r_2 = 1.30,$$
 $r_1 + g_2 = 0.86,$

and thus the asymmetry

$$\gamma - \rho = g_1 + r_2 - r_1 - g_2 = 0.44.$$

The Battle of Britain: Overall

$$\frac{dR}{dt} = -gG^{1.12\pm0.17}R^{0.18\pm0.25}, \qquad \frac{dG}{dt} = -rR^{0.00\pm0.25}G^{0.86\pm0.18}$$

has
$$\gamma \equiv 1 + g_1 - g_2 \simeq 1.3$$
, $\rho \equiv 1 + r_1 - r_2 \simeq 0.8$.

More accurate are the differences of $g_1 + r_2$ or $r_1 + g_2$ from one:

$$g_1 + r_2 = 1.30,$$
 $r_1 + g_2 = 0.86,$

and thus the asymmetry

$$\gamma - \rho = g_1 + r_2 - r_1 - g_2 = 0.44.$$

We can conclude with fair confidence that $\gamma > 1$ and $\rho < 1$, and with much more confidence that $\gamma > \rho$.

Thus the German attackers may have benefited from mere numbers, all else equal: but the British defenders did not.

lan Johnson & NJM, Lanchester models and the Battle of Britain, *Naval Research Logistics* **58** (2011) 210-222.

The Battle of Britain: The Big Wing

Should the RAF's squadrons mass into wings (3 squadrons) or 'Big Wings' (5 or more) before engaging?

The Battle of Britain: The Big Wing

Should the RAF's squadrons mass into wings (3 squadrons) or 'Big Wings' (5 or more) before engaging?

Is mere concentration of numbers advantageous for the RAF?

The Battle of Britain: The Big Wing

Should the RAF's squadrons mass into wings (3 squadrons) or 'Big Wings' (5 or more) before engaging?

Is mere concentration of numbers advantageous for the RAF?

Is
$$\rho > 1$$
?

The Battle of Britain: The Big Wing

Should the RAF's squadrons mass into wings (3 squadrons) or 'Big Wings' (5 or more) before engaging?

Is mere concentration of numbers advantageous for the RAF?

Is
$$\rho > 1$$
?

No

The Battle of Britain: The Big Wing

'British air doctrine was based upon Lanchester' (Higham)

– and Trafford Leigh-Mallory, commander of 12 Group to the north, wanted Big Wings.

The Battle of Britain: The Big Wing

'British air doctrine was based upon Lanchester' (Higham)

- and Trafford Leigh-Mallory, commander of 12 Group to the north, wanted Big Wings.

Rather, to the extent to which $\gamma > \rho$, the RAF had a defender's advantage.

The achievement of Keith Park (Commander, 11 Group, RAF Fighter Command) lay in creating and exploiting this advantage:

'It [is] better to have even one strong squadron of our fighters over the enemy than a wing of three climbing up below them'

NJM & Chris Price, Safety in Numbers: Ideas of concentration in Royal Air Force fighter defence from Lanchester to the Battle of Britain, *History* **96** (2011) 304-325.

What are the exponents for air combat?

What are the exponents for air combat?

Battle of Britain: Germans 1.3, British 0.8

What are the exponents for air combat?

Battle of Britain: Germans 1.3, British 0.8

Pacific air war: Americans 1.3, Japanese 0.9

What are the exponents for air combat?

Battle of Britain: Germans 1.3, British 0.8

Pacific air war: Americans 1.3, Japanese 0.9

Korea: Americans 1.2, North Koreans 0.1

- and these differences are understated.

What are the exponents for air combat?

Battle of Britain: Germans 1.3, British 0.8

Pacific air war: Americans 1.3, Japanese 0.9

Korea: Americans 1.2, North Koreans 0.1

- and these differences are understated.

The best engagement-level data we have is for Vietnam.

Vietnam 1965-68; Rolling Thunder

Engagement-level data, and a simple linear regression of loss rates against numbers.

Does a sortie lead to a kill, a loss, or neither?

Vietnam 1965-68; Rolling Thunder

Engagement-level data, and a simple linear regression of loss rates against numbers.

Does a sortie lead to a kill, a loss, or neither?

F4 (US fighter) sorties tend to cause NVAF (but not US) losses. F105 (US bomber) sorties tend to cause neither.

US conclusion: F4s should sortie in numbers.

Vietnam 1965-68; Rolling Thunder

Engagement-level data, and a simple linear regression of loss rates against numbers.

Does a sortie lead to a kill, a loss, or neither?

F4 (US fighter) sorties tend to cause NVAF (but not US) losses. F105 (US bomber) sorties tend to cause neither.

US conclusion: F4s should sortie in numbers.

NVAF (MiG 17,19,21) sorties tend to cause **own** losses, whether against F4s or F105s.

NVAF conclusion: sortie sparingly, disrupt, avoid engagement.

To believe that air combat is square-law and symmetric is precisely wrong: air combat is approximately linear-law, and **asymmetric**.

To believe that air combat is square-law and symmetric is precisely wrong: air combat is approximately linear-law, and **asymmetric**.

To the extent to which there is some advantage in numbers, this is true only for the **attacker**. In contrast the **defender**'s optimal tactics are of cover, concealment, dispersal, denial, disruption, force preservation.

Ian Horwood, NJM & Chris Price, Concentration and asymmetry in defensive air combat: from the battle of Britain to the 21st century, submitted to *Air Power Review*.