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What can a historical analysis tell us about the implications
for tactical and operational principles?
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The aimed-fire model: G (t) Green units fight R(t) Red units.

dG

dt
= −rR

Green’s instantaneous loss-rate is proportional to Red numbers

dR

dt
= −gG

and vice versa. Divide:

dR

dG
=

gG

rR
or rR dR = gG dG

and integrate:
1

2
rR2 =

1

2
gG2 + constant

throughout the battle, the Square Law.
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The constancy of
rR2 − gG2

tells us how to combine numbers (R,G ) and effectiveness (r , g).

Numbers win:

suppose we begin with twice as many Reds as Greens, R0 = 2G 0,
but that Greens are three times more effective, g = 3r .
Then

rR2 − gG2 = r(2G 0)
2 − 3rG2

0 = rG2

0 > 0,

and Red wins: the battle ends with G = 0, R = G0.

Concentration is good:

If Red divides its forces, and Green fights each half in turn,
Green wins the first battle, with

√

2/3 ≃ 80% of G 0 remaining,
Green wins the second battle, with

√

1/3 ≃ 60% of G0 remaining.
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Generalized scaling laws for air combat

Fit loss-rates to powers of own and enemy numbers:

dG

dt
= −rR r 1Gg2

dR

dt
= −gG g1R r 2

Divide, re-arrange, integrate: we find that

r

ρ
Rρ −

g

γ
Gγ .

is constant, where ρ = 1 + r1 − r2 and γ = 1 + g1 − g2,
the exponents, capture the conditions of battle:

– Green should concentrate its force if γ > 1, divide if γ < 1.

– if ρ > γ then Green has a defender’s advantage, by a factor ρ/γ



Symmetric dynamics: The loss and force ratios

The crucial tactical relationship is
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How does the loss ratio dG/dR depend on the force ratio R/G ?
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The crucial tactical relationship is

dG

dR
=

r

g

Rρ−1

G γ−1
.

If the dynamics are symmetric, ρ = γ, we can ask:

How does the loss ratio dG/dR depend on the force ratio R/G ?

Two obvious possibilities are

Lanchester’s square law: simple proportionality, ρ = γ = 2

Lanchester’s linear law: no dependence



Symmetric dynamics: The loss and force ratios

‘The dependence of the casualty exchange ratio on the force ratio
is not linear; it is exponential’

– Col. John Warden, USAF, The Air Campaign

Cites a 1970 study of Korea and WW2.



Symmetric dynamics: The loss and force ratios

‘The dependence of the casualty exchange ratio on the force ratio
is not linear; it is exponential’

– Col. John Warden, USAF, The Air Campaign

Cites a 1970 study of Korea and WW2.

Well, no.

NJM, Is air combat Lanchestrian?, MORS Phalanx 44, no. 4 (2011) 12-14



The loss ratio: Battle of Britain
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The loss ratio: Pacific air war
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The loss ratio: Korea
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Air combat does not obey the square law.

To the extent to which it obeys a symmetric Lanchester law,
it is approximately linear-law.

But air combat is asymmetric.



Battle of Britain: RAF losses
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= −gG 1.12±0.17R0.18±0.25

Hooray for Lanchester!



Battle of Britain: Luftwaffe losses
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dG

dt
= −rR0.00±0.25G 0.86±0.18

Not so good.



Subtleties

G and R are highly correlated (0.74):
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and so the overall powers in the loss-rates, g1 + r2 and r1 + g2,
are better-determined than their constituents: variation is less
significant along the lines of constant g1 + r2 and r1 + g2 than
orthogonal to them.



Subtleties

When g1 + r2 6= 1 or r1 + g2 6= 1, autonomous battles (‘raids’)
should not be aggregated into daily data.

If they are, the effect is to push the overall powers g1 + r2 and
r1 + g2 away from their true values and towards one, and to
reduce the quality of the fit.



Subtleties

Example: y = x2
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Subtleties

Example: y = x2 and sums of these: e.g. not only (3, 9) but also
(1 + 2, 1 + 4) = (3, 5) and (1 + 1 + 1, 1 + 1 + 1) = (3, 3).
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and the best fit is now log y = 1.5 log x , with ΣR2 = 0.6.



Subtleties

Upshot: asymmetry is typically greater than the data suggest.
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The Battle of Britain: Overall

dR

dt
= −gG 1.12±0.17R0.18±0.25 ,

dG

dt
= −rR0.00±0.25G 0.86±0.18

has γ ≡ 1 + g1 − g2 ≃ 1.3, ρ ≡ 1 + r1 − r2 ≃ 0.8.

More accurate are the differences of g1 + r2 or r1 + g2 from one:

g1 + r2 = 1.30, r1 + g2 = 0.86,

and thus the asymmetry

γ − ρ = g1 + r2 − r1 − g2 = 0.44.

We can conclude with fair confidence that γ > 1 and ρ < 1, and
with much more confidence that γ > ρ.

Thus the German attackers may have benefited from mere
numbers, all else equal: but the British defenders did not.

Ian Johnson & NJM, Lanchester models and the Battle of Britain, Naval

Research Logistics 58 (2011) 210-222.
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The Battle of Britain: The Big Wing

Should the RAF’s squadrons mass into wings (3 squadrons)
or ‘Big Wings’ (5 or more) before engaging?

Is mere concentration of numbers advantageous for the RAF?

Is ρ > 1?

No
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‘British air doctrine was based upon Lanchester’ (Higham)

– and Trafford Leigh-Mallory, commander of 12 Group to the
north, wanted Big Wings.



The Battle of Britain: The Big Wing

‘British air doctrine was based upon Lanchester’ (Higham)

– and Trafford Leigh-Mallory, commander of 12 Group to the
north, wanted Big Wings.

Rather, to the extent to which γ > ρ, the RAF had a defender’s
advantage.

The achievement of Keith Park (Commander, 11 Group, RAF
Fighter Command) lay in creating and exploiting this advantage:

‘It [is] better to have even one strong squadron of our fighters over
the enemy than a wing of three climbing up below them’

NJM & Chris Price, Safety in Numbers: Ideas of concentration in Royal Air

Force fighter defence from Lanchester to the Battle of Britain, History 96

(2011) 304-325.
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Asymmetry in air combat

What are the exponents for air combat?

Battle of Britain: Germans 1.3 , British 0.8

Pacific air war: Americans 1.3, Japanese 0.9

Korea: Americans 1.2, North Koreans 0.1

– and these differences are understated.

The best engagement-level data we have is for Vietnam.
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Vietnam 1965-68; Rolling Thunder

Engagement-level data, and a simple linear regression of loss rates
against numbers.

Does a sortie lead to a kill, a loss, or neither?

F4 (US fighter) sorties tend to cause NVAF (but not US) losses.
F105 (US bomber) sorties tend to cause neither.

US conclusion: F4s should sortie in numbers.

NVAF (MiG 17,19,21) sorties tend to cause own losses, whether
against F4s or F105s.

NVAF conclusion: sortie sparingly, disrupt, avoid engagement.
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To believe that air combat is square-law and symmetric is precisely wrong:

air combat is approximately linear-law, and asymmetric.

To the extent to which there is some advantage in numbers, this is
true only for the attacker. In contrast the defender’s optimal
tactics are of cover, concealment, dispersal, denial, disruption,
force preservation.

Ian Horwood, NJM & Chris Price, Concentration and asymmetry in defensive

air combat: from the battle of Britain to the 21st century, submitted to Air

Power Review.


