
 ISMOR31

1
International Symposium on Military Operational Research (ISMOR 31), July 2014

Artificial intelligence algorithms and new approaches to

wargame simulation
S.G. Lucek, NSC1 & S.J. Collander-Brown, Dstl2

Abstract
The Mission Planner is a decision-making toolset developed by NSC for Dstl currently

applied at tactical level. It aims to support Dstl high intensity warfighting simulations by

reducing or eliminating the need for complex pre-scripting or human-in-the-loop.

Different stochastic optimisation Artificial Intelligence (AI) techniques have been used

(Genetic Programming and a novel implementation of Simulated Annealing). The

algorithms have been employed in a generic architecture that allows simple application

to different problems.

This flexibility allows the AI to generate plans against a reduced problem set (a Meta

model) which represents only the essential elements of the full problem. The solution

can then be evaluated against the full problem set, in this case SimBrig assessing

brigade level land engagements. This approach has successfully overcome some of the

limitations traditionally associated with the AI techniques used.

Formulating the problem in a novel way, using military-like syntax, means that the AI

algorithms efficiently generate plans for tactical problems that resemble human-like

decision making.

This paper presents the approach and techniques used in both the AI algorithms and the

Meta wargame simulation.

Introduction
The Mission Planner is a decision-making toolset developed by NSC for use in Dstl high intensity

warfighting simulations. It automatically develops plans for allocating forces in space and time in

order to achieve a particular objective, in a situation of partial knowledge and where the enemy is

also planning.

Traditionally Dstl models have approached such problems by building complex pre-scripted orders or

by using a human-in-the-loop. These approaches can, in principle, represent human decision making

in a reasonably accurate manner but at the cost of time (and therefore money) in the set up and/or

running of the model. These constraints can severely limit their practical application.

The Mission Planner has been developed to use two different stochastic optimisation AI techniques

in order to solve tactical problems in a number of wargames, so that they can play one or more

sides. The programme of work was started to support the model CLARION, and the AI algorithms

1 Newman & Spurr Consultancy Ltd, Norwich House, Knoll Road, Camberley, Surrey, GU15 3SY, UK,
s.lucek@nsc.co.uk
2 Dstl, Portsdown Hill Rd, PO17 6AD, sjcbrown@dstl.gov.uk

ISMOR31 Artificial Intelligence algorithms and new approaches to wargame simulation

2
International Symposium on Military Operational Research (ISMOR 31), July 2014

have been applied to: a proof-of-concept test bed (in order to better understand the capabilities and

limitations of the algorithms employed), SimBrig and a bespoke brigade level land simulation, META.

Stochastic Optimisation
Stochastic Optimisation is a family of techniques for solving any generalised problem. These are

often applied to complex problems, where it is impractical to go through all possible solutions (called

the solution space) to determine the optimum. These techniques randomly explore a subset of the

solution space in a rigorous mathematical

fashion, to arrive at a “good” solution to the

problem, though not necessarily guaranteed to

be the best solution. An important aspect of

these techniques is that they balance exploring

avenues that offer promising results with

searching the full solution space. Therefore

they are able to find a globally “good” solution

rather than the best solution in a local area of

the solution space, as illustrated in the

adjacent picture.

The general approach was first considered by

H. Robbins and S. Monro (1951) and is

summarised in J. C. Spall (2003).

Traditionally these techniques are applied to a wide range of problems, including wargaming (D.

Jackson, 2005) timetabling (Zhao Le, et al., 2014) and scheduling (e.g. the travelling salesmen

problem, V. Černý, 1985), game solutions (e.g. chess: A. Hauptman, M. Sipper 2005 and 2007; black

gammon: Y. Azaria, M. Sipper, 2005; soccer bots: S. Luke, 1998; and robocode: Y. Shichel, et al. 2005)

and circuit and antennae design (J.R. Koza et al., 1999, J. Lohn, et al., 2004).

Genetic Algorithm Overview
Genetic algorithms have a long history of use as an optimisation technique. N.A. Barricelli (1963)

simulated evolution techniques to play a simple game, and the methods are described in books by A.

Fraser, D. Burnell (1970).

The Genetic Algorithm technique has an abstract representation of a candidate solution to a

problem, referred to as an Entity. This is typically a bit stream, a binary string of 0s and 1s. These

are then translated into a solution to a specific problem by a process called decoding. For a

wargame example, the 0s and 1s could translate to an order set:

 Move 000

 Attack 001

 Defend 010

 Support 011

 Retreat from 100

The following bits could represent input values to the order, for example the actor or target units,

timings, areas etc.

Solution Space

So
lu

ti
o

n
 F

it
n

e
ss

Local best solution

Global best solution

S.G. Lucek ISMOR31

3
 International Symposium on Military Operational Research (ISMOR 31), July 2014

An order sequence across the units in the wargame could then be built up from the bit stream.

This order set is then evaluated in a wargame model to obtain a “fitness measure”, a quantitative

measure of how good the solution is.

A population of Entities is considered, randomly initialised.

This population is then evolved in generations, with parent solutions chosen by a method that

mimics survival of the fittest, representing evolutionary pressure. Children are then generated by

mutation and/or crossover of the bit streams of the parents.

A ‘best’ solution is then achieved after a number of generations.

The selection of parents is based on their measure of fitness, which enables the population to evolve

to fitter solutions. The selection technique must maintain genetic diversity in order to arrive at a

globally good solution, as a solution might have poor fitness, but consist of good elements that only

need slight change to achieve a good result.

Tournament selection is one method that achieves this. When selecting a parent, first a number of

candidates are chosen at random (regardless of their fitness). The best out of these is then selected.

This ensures that a small number of well fitted but related entities are not always selected,

swamping the population.

The fitness measure is core to all Stochastic Optimisation algorithms. A good measure of fitness

allows algorithm to correctly apply selection pressure and ensures fittest elements of population are

evolved.

For the wargame example the fitness measure is obtained by first decoding an entity to an order set.

These orders are then run through the evaluation wargame simulation and the results are assessed

in terms of losses, achievements (positions held or denied from the enemy, or enemy losses or

neutralisation), risk (enemy proximity and whether own units are mutually supporting), and

efficiency (minimum resource consumption).

Great care should be taken that the fitness measure should be well understood and constrained,

which can often be difficult in the case of “bad” solutions. A quantitative measure of success or

fitness is important so as to properly select between two possible solutions and to allow the

algorithm to navigate around “bad” solutions and explore the full solution space. This is most easily

achieved by very clear and rigorous normalisation of all fitness measures and parameters.

It is important to note that Stochastic Optimisation techniques are notorious for finding loopholes in

the logic of the evaluation model and metrics used for fitness measurement. This is because the

algorithm has no understanding of the problem solved; as far as it is concerned it is simply swapping

0s and 1s and it has no concept as to why the resultant solution is good or bad.

Although this finding of loopholes is problematic if the goal is to find the “best” solution to a

problem it can be advantageous. In particular by exposing the loopholes it provides a method of

assisting in the verification and validation of complex models.

ISMOR31 Artificial Intelligence algorithms and new approaches to wargame simulation

4
International Symposium on Military Operational Research (ISMOR 31), July 2014

Genetic Programming
The first statement of modern "tree-based"

genetic programming was given by N.L.

Cramer (1985). The methods are described in

J.R. Koza (1999) and R. Poli, et al. (2008).

Genetic Programming is a subset of Genetic

Algorithms. The difference is that, instead of

a bit stream of 0s and 1s, a candidate solution

is made up of a node/input tree as illustrated

in the adjacent example.

Assuming the simulation starts at a time T, the

nodes translate as follows:

 Attack advance by actor unit A moving (and attacking if in range) target B, starting at time T

ending at time T+C

 Unit A moves towards location D, starting at time T+C (the time actor A finishes its previous

action represented by node a) finishing at time T+C+E

 Unit L moves towards (and defends if in range) location D starting at time T and ending at

time T+A

 Unit A moves towards (and defends if in range) unit I, starting at time T+C+E (the time actor

A finishes its previous action represented by node b) and ending at time T+C+E+K)

 Unit F moves towards (and supports if in range) unit I, starting at time T and ending at time

T+J

 Unit F moves towards (and attacks if in range) target G, starting at time T+J (the time actor F

finishes its previous action represented by node e) and ending at time T+J+H

It is important to note that whilst a wargame example has been illustrated, in a Genetic Algorithm an

entity is simply a node tree, each node having a number of input values and node children. The

algorithm has no concept of what a node or input might mean, and it is only at the decoder stage

that it is determined how each node translates to an order.

In principal, there is no difference between the mathematics of a bit stream Genetic Algorithm and a

node tree Genetic Programming algorithm. However, it is much easier to write a decoder that

efficiently translates the Entity, in its generic form, to a solution for a particular problem.

Algorithm efficiency is vital for any Stochastic Optimisation technique. Inefficient algorithms will not

explore the solution space as convergence to a good solution requires a good probability of

generating better solution from each generation otherwise potential improvements are lost. It is

not the case that an inefficient algorithm will simply converge more slowly to a “good” solution; it

might never converge at all.

An efficient algorithm must produce Entities with measurable fitness to allow comparison between

Entities in order that the proper selection pressure is applied for evolution. “Bad” solutions are

important in terms of the algorithm being able to explore the full solution space. There must,

however, be a sensible measure of how “bad” these solutions are, so that the algorithm can navigate

Attack

advance (a)

Value ValueValue

Actor:

Unit A

Target:

Unit B
Duration:

C

Move

Towards (b)

Value Value

Actor:

Unit A

Target:

Location D

Duration:

E

Value

Node

Defend (c)

Value ValueValue

Actor:

Unit L

Target:

Location D
Duration:

A

Value

Defend (d)

ValueValue

Actor:

Unit A

Target:

Unit I
Duration:

K
Node

Support (e)

Value Value

Actor:

Unit F

Target:

Unit I

Duration:

J

Value

Node

Attack

advance (f)

Value

Actor:

Unit F

Target:

Unit G

Duration:

H

Value Value

Node Node

S.G. Lucek ISMOR31

5
 International Symposium on Military Operational Research (ISMOR 31), July 2014

to better solutions. Therefore it is vital that Entities must always decode to a feasible solution (for

example an order set) that can be measured, and that any change in the Entity (in its generic form)

translates to a meaningful change in the translated solution.

This efficient decoding is much simpler for a node/input tree of a Genetic Programming algorithm

than it is for a bit stream. However, it should be noted that there is no necessary difference

between a Genetic Programming

technique and a bit stream Genetic

Algorithm with a well written

decoder. If an Entity is always

translated to a valid orders set, no

matter how that Entity is randomly

altered, then one would not expect a

Genetic Programming algorithm to be

significantly different from other

Genetic Algorithms.

An example of a child entity generated from

parent entities is illustrated in the adjacent

figure.

The crossover nodes of each parent are chosen

at random. The child is formed from the node

tree above the crossover node of the first

parent merged with the node tree below the

crossover node of the second parent.

Simulated Annealing
Simulated Annealing is a well understood and efficient optimisation technique, which shares many

similar elements to Genetic Algorithms. The earliest form of this algorithm is the Metropolis-

Hastings algorithm, N. Metropolis, et al. (1953). The method is described in detail in W.H. Press

(2007).

The concepts are analogous in form to annealing in metallurgy, a technique where heating and

controlled cooling of a material increases the size of crystals and reduces defects in the atomic

lattice. It uses the same mathematics as determining probability states given the thermodynamic

free energy. As the Boltzmann distribution is mathematically well understood, the process is much

better defined than the heuristic approach of Genetic Algorithms.

A candidate solution is considered, which can be formulated using the same generic representation

as the Genetic approaches. A single solution is considered throughout the process, rather than a

Defend

Value ValueValue

Actor:

Unit L

Target:

Location D
Duration:

A

Defend

ValueValue

Actor:

Unit A

Target:

Unit I
Duration:

K

Attack

advance

Value ValueValue

Actor:

Unit A

Target:

Unit B
Duration:

C

Move

Towards

Value Value

Actor:

Unit A

Target:

Location D

Duration:

E

Attack

advance

Value

Actor:

Unit F

Target:

Unit G

Duration:

H

Support

Value Value

Actor:

Unit F

Target:

Unit I

Duration:

J

Defend

Value ValueValue

Actor:

Unit L

Target:

Location D
Duration:

A

Defend

ValueValue

Actor:

Unit A

Target:

Unit I
Duration:

K

Support

Value

Actor:

Unit F

Target:

Unit I
Duration:

J

Value

Duration:

B

Move

Towards

Value Value

Actor:

Unit A

Target:

Location D

Attack

advance

ValueValue

Target:

Unit B
Duration:

C

Actor:

Unit A

Attack

advance

Value

Target:

Unit G

Duration:

H

Value

Actor:

Unit L

Crossover

Node

Parent A

Parent B

Crossover

Node

Defend

ValueValue

Actor:

Unit A

Target:

Unit I
Duration:

K

Support

Value

Actor:

Unit F

Target:

Unit I
Duration:

J

Value

Duration:

B

Move

Towards

Value Value

Actor:

Unit A

Target:

Location D

Attack

advance

ValueValue

Target:

Unit B
Duration:

C
Actor:

Unit A

Defend

Value ValueValue

Actor:

Unit L

Target:

Location D
Duration:

A

Attack

advance

Value ValueValue

Actor:

Unit A

Target:

Unit B
Duration:

C

Move

Towards

Value Value

Actor:

Unit A

Target:

Location D

Duration:

E

Attack

advance

Value

Actor:

Unit F

Target:

Unit G

Duration:

H

Support

Value Value

Actor:

Unit F

Target:

Unit I

Duration:

H

Child

ISMOR31 Artificial Intelligence algorithms and new approaches to wargame simulation

6
International Symposium on Military Operational Research (ISMOR 31), July 2014

population. This solution is randomly perturbed to give a new solution. The probability that the

newly generated solution will replace the current solution as the candidate solution is given by:

𝑒−
𝐹𝐶−𝐹𝑁
𝑇

where T is the “Temperature” and F is the Fitness measure of the new (N) or current (C) solutions.

Simulated Annealing has the concept of an annealing schedule, the Temperature T, analogous to the

thermodynamic free energy of the system. It can be easily understood if the fitness measure is well

constrained. This is best achieved by very clear and rigorous normalisation of all fitness measures

and parameters. For example if the worst of all possible results has a fitness of 0 and the best of all

possible results has a fitness of 100, then a temperature of 100 corresponds to a high probability

that a poor solution will be chosen over a good one (albeit temporarily, to explore the full solution

space), whereas a temperature of 1 will give a low probability.

The annealing schedule is the temperature profile used to generate the solution. Typically a high

value of T is used initially for a given number of steps (or until a required convergence of changes in

the fitness of the best solution found so far is reached). This allows “bad” solutions to be explored

freely so that a wide region of the solution space is considered. The temperature is then lowered for

a second round of steps, and so on. This reduction in T constrains the area considered, until finally

the algorithm is considering refinements to the best solutions.

Simulated Annealing and Solution Perturbation
One of the main problems of the application of Simulated Annealing to gaming problems is how to

perturb the candidate solution to obtain a new solution. Simulated Annealing is typically applied to

problems where the free parameters are continuous and can be altered by a variable amount.

Traditionally the solution should undergo large perturbations when considering large temperatures

and small perturbations when considering low temperatures. A commonly held metric is that

perturbations that accept the perturbed candidate solution about 50% of the time are most

efficient.

However, the free parameters of a wargame problem are not continuous, but are discrete. Order

sets can be randomly altered in discrete chunks of orders and order types. If the Entity solution is

considered using the same Node/Input tree of the GP solution then an approach to controlling the

scale of perturbation is much clearer. A perturbation can be applied either to a node (by randomly

selecting a node in the tree for the current solution and replacing it with a randomly generated node

tree) or to the input value(s) of a node (or nodes), as a simple random change. At high temperature,

it is possible to favour Node perturbations (which represent a larger change to the solution than

input changes) and also to favour nodes with many descendants. Input changes at high temperature

would change multiple inputs. To the author’s knowledge, such an approach has not been used

before.

Seeding the initial population
It is possible to seed the initial random population with an individual or group of individuals that

represent a good starting point. These might be from the population obtained from previous runs of

the algorithm for a situation that has now evolved, or, alternatively, they might be constructed by

S.G. Lucek ISMOR31

7
 International Symposium on Military Operational Research (ISMOR 31), July 2014

the user. There is a danger that if the seed individuals are much better than the randomly created

trees, then their descendants can take over the population rapidly with a loss of genetic diversity. In

these cases it is often more successful to control this diversity loss by initialising the whole

population to either identical or mutated copies of the seed individuals.

The Mission planner toolset allows saving entity solutions (in their generic form) to a plan store.

These stored plans represent a library of solutions that can then be used as seed solutions for future

runs of the toolset.

Stochastic Optimisation, limitations
Stochastic Optimisation techniques, traditionally, have a number of limitations.

First, they are slow. Typically, for a brigade level problem, it might require evaluation of some tens

of thousands of possible solutions to reach a reasonable solution. Even if each evaluation takes a

millisecond this would mean the time taken for a solution would be measured in tens of seconds.

Also the algorithms have no concept or understanding as to why a

solution might be good. This has a tendency of generating solutions in

response to the exact detail of the problem posed, rather than

necessarily a solution that is applicable to a wide range of problems. This

makes these techniques excellent at, for example, circuit or antennae

design (J.R. Koza et al., 1999, J. Lohn, et al., 2004), where they are able to

come up with novel solutions that are not naturally intuitive, as

illustrated in the adjacent figure. However they are not necessarily

suitable for arriving at doctrinally correct solutions that reflect the perceived wisdom of, for

example, the Staff Officers Handbook, for a wargame problem, unless heavily constrained.

As discussed above Stochastic Optimisation techniques are also famous for exploiting loopholes in

the problem posed. These might be in the fitness criteria by which a solution is assessed, or else in

the logic of the evaluation model. This arises, again, from the fact that the algorithms have no

concept or understanding as to why a solution is good.

Any implementation of these techniques will have to take into account these limitations, either

accepting them, or finding solutions.

The Mission Planner addresses these limitations in a number of ways, detailed in the following

sections. The first is to consider a solution against a range of plans, to ensure solutions are suited to

a range of problems. The second is by using a military-like syntax for the decoding of order sets,

allowing for efficient generation of plans that resemble human-like decision making. Lastly the

generic form of the algorithms has been exploited to allow solving against a range of plan

evaluators, including a reduced problem set (a Meta model). This represents only the essential

elements of the full problem, enabling the use of algorithms that are both extremely robust and

execute quickly.

Mission Planner
The mission planner is a toolset that applies the AI algorithms to a problem set in an iterative

approach as illustrated in the figure below:

ISMOR31 Artificial Intelligence algorithms and new approaches to wargame simulation

8
International Symposium on Military Operational Research (ISMOR 31), July 2014

Each iteration evolves a full solution

for a problem set, using the previous

iteration’s best solution(s) or solution

population. The new iteration might

change any of the following: the side

being considered (for example in the

first iteration generating Red plans

and then in a second iteration

generating plans for Blue to counter

these), the AI algorithm control

parameters (for example one

iteration might set parameters that control the solution space more widely, whilst a second might

set parameters to examine more closely the areas representing the best solutions), or a new set of

problems could be considered that might, for example, represent a changing or evolving situation.

The first stage of each iteration is the retrieval of the entities that reflect the current best solution(s)

or solution population for sides opposing the side that is going to be evolved in this iteration. These

are then decoded to represent opposing plans. Also the best solution(s) or solution population is

retrieved for the side being evolved. If the side being evolved has not been considered by any

previous iteration then solution(s) or solution populations are generated at random or from a

specified seed (or seeds) from the plan store.

 The problem set consists of one or more scenarios. A generic solution is decoded as an order set for

each of these scenarios, and the measure of fitness obtained for each. A final, overall fitness is

obtained, weighting the fitness obtained for the best, worst and intermediate individual scores. This

ensures that the solution obtained is good against a wide variety of problems and is not limited to

the specific details of a single

problem. It also permits solution

of problems where there is

uncertainty in the problem posed,

for example, if Blue has does not

have a clear view of Red forces, a

number of scenarios could be

considered.

Mission Planner, Generic

Architecture
As has been discussed, the AI

algorithms work with a completely

generic form of solution that can

be applied to any problem. The

only problem specific element is

the decoder, which takes a

solution, in its generic form, and

translates it to a solution for a

Best solution(s)/
population –
evolved side

Best solution(s)/
population –

Opposing sides

Seed Solutions

Iteration Evolution
Parameters

Iteration Evolution

Iteration Evolution
Problem Set

Iteration Transition

Solution Library

Decoder-Encoder

SimBrig Wrapper - Best Solution View

Mission Planner

Meta Model - Plan Evaluator

AI Engine

SimBrig Wrapper - Plan Evaluator

Meta Model GUI Meta Model

Meta Model Gui Meta Model

Meta Model Translator

Meta Model Translator

Generic Solution

SimBrig Order Set

Meta Model Order Set

Meta Model - Best Solution View

SimBrig

SimBrig

S.G. Lucek ISMOR31

9
 International Symposium on Military Operational Research (ISMOR 31), July 2014

specific problem, in this case an order set for a wargame simulation. This specific solution is then

evaluated to obtain a fitness score, which the AI algorithm then stores against the generic form of

the solution to determine its use in exploring the full problem space.

The architecture of the Mission Planner exploits the generic nature of the algorithms employed to

allow it to consider any problem, as illustrated in the above figure.

Decoders can be written in a plug and play fashion to consider problems of a completely different

form. The inter-changeability of decoders means that one decoder can be used to assess solutions

during the solution evolution process (the plan evaluator), whilst a different decoder can be used to

view and assess the best solution arrived at (the solution view).

The adjacent figure demonstrates this with decoders for plan evaluation and solution views for both

the META model and SimBrig

Military Syntax
The mission planner uses a military-

like syntax for decoding of order

sets, i.e. for translating a generic

solution into an order set. This

method is currently used for both

the SimBrig and META decoders.

The concepts in a military synch

matrix are used, an example of

which is illustrated in the adjacent

figure.

The nodes in the generic solution are

translated into Areas and Timelines

and Manoeuvre/Support orders. The

inputs determine which locations correspond to each area in the solution, and the times of the

timelines. Inputs for each Manoeuvre/Support order determine which areas and timelines are

associated with that Manoeuvre/Support order.

In this way units naturally co-operate in time and space. By using this military syntax, the order set

generated naturally looks human like. It also greatly enhances efficiency. For example, it can readily

be seen that a “generically” good order set can be generated, which determines how units are to co-

operate, by the way each unit’s orders are linked to areas and timelines. A solution that is good for

one problem can be applied to a different problem simply by changing the specifics of the locations

of the areas and the timings of the timelines. The AI algorithms will exploit such efficiencies when

randomly generating solutions.

To the authors knowledge this is the first time that this approach has been used for Stochastic

Optimisation algorithms applied to a wargame problem.

MSN: ON Os, DIV ATTACKS TO SECURE
OBJ BAILEY IN ORDER TO ALLOW FORCE
BRAVO TO COMPLETE DEFEAT OF en IN
OBJ STEWART.

NORTH ORIGINATOR:

DTG:

CONCEPT OF OPS
Div Comd's intent is for fast
attack to defeat en in Obj
BAILEY, secure PL GIN and
so set conditions for Force
BRAVO attack before enemy
res fmns can react deciseively.
On completion of prelim ops by
Cx to secure PL SODA, Dx
and Ex attack to seize obj
BAILEY in close coordination
with Div deep ops to isolate
and attack en in Objs GRANT,
BAILEY and STEWART and
protect open flanks.

TIME (Estimated) -12 -10 -8 -6 -4 -2 H Hour +2 +4 +6 +8 +10 +12

ENEMY ACTION Deep Ops
Recce

 Fight in Defend
 Sy Zone Main Posn

CB
Fire

 Fight in Defend CB
 Sy Zone Main Posn Fire

OWN DECISION PTD Os to move to
D and E Bdes

Launch Avn
Attack

O deep Op to
Sp BRAVO Attack

DEEP OPS
Air and Arty

Attack GRANT
Overwatch
Flanks

 Air and Arty Air Attack
Attack BAILEY RAG

Air and Arty
Attack STEWART

Attack in sp
of BRAVO

C BDE OPS
Assy Area

PLUM
Secure

Obj GRANT
Div
Res

Secure
BRAVO LD

D BDE OPS
Assy Area

APPLE
Move on

Routes 1 + 2
Cross

LD
Secure

Obj BAILEY

E BDE OPS
Assy Area

APPLE
Move on

Routes 3 + 4
Cross

LD
Secure

Obj BAILEY
Div
Res

M
A
N
O
E
U
V
R
E REAR OPS

Assy Area
Sy

Risk as Bde
Preps Attack

Take on sy
of GRANT

FIRE SP Prep Fwd Attack
 Posn + Ammo Obj GRANT

Sp
C Bde Attack

Attack RAG
fire SEAD

 Attack SEAD
 RAG

AIR DEFENCE Protect Protect
 Assy Area C Bde Mov

 Protect Cover PL
 Bde Movs SODA

Mov with
Lead Bde

 Cover PL Protect BRAVO Sp BRAVO
 GIN Assy Area Attack on
 STEWART

ENGINEER SP Route Sy Clear
Routes 1 - 4

Sp to
D and E Bdes

 Maint on BRAVO
 BRAVO MSR Passage of Lines

Mob sp
to Corp Tps

CSS Refurb
Div

 Refuel Refurb
 D + E Bdes C Bde

Resup Bdes
on Obj BAILEY

refuel
BRAVO Tps

COMD FWD HQ SU
 with C Bde Moves

 Main to FWD
 GRANT with E Bde

SU
Moves

 MAIN HQ FWD to
 BAILEY BRAVO MAIN

REMARKS Sp to BRAVO op

PLUM

APPLE

OBJ

GRANT
II

OBJ

STEWART

XX

RAG

X BRAVO OP

PRELIM OP

x

C

BRAVO
4

LD

PL SODA

PL SODA

OBJ

BAILEY
III

PL GIN

LD

3

2

1

x

D

x

E

ISMOR31 Artificial Intelligence algorithms and new approaches to wargame simulation

10
International Symposium on Military Operational Research (ISMOR 31), July 2014

META
The META wargame model (Model for EngagemenT Analysis) is a bespoke model to evaluate a

brigade level land engagement. It has been specifically developed to meet the requirements of the

AI algorithms of the Mission Planner, which are for a plan evaluation model that is fast and robust,

i.e. has no loopholes in the logic of its evaluation algorithms and that will also successfully evaluate

all order sets, no matter how nonsensical they might seem. This is important for the AI algorithms,

as they need to consider “bad” solutions, to be able to assign a quantitative measure of fitness to

enable the algorithm to navigate to “good” solutions whilst still exploring the full solution space.

The guiding principle of the META model has been simplicity. The algorithms have been streamlined

to represent only the essential elements of the full problem, in order to avoid unintentional

complexity. The simplicity of the approach has also facilitated a clear and flexible model framework

and architecture into which new algorithm modules might be added, or old ones replaced.

The figure below illustrates the META model elements.

As higher level land operations are being considered (in the first instance at brigade level), military

forces are grouped together into aggregated units. A unit is defined by a type, representing both the

size and military type/role, for example; British Infantry Battalion, British Tank Regiment etc.

The focus of the model is for an

aggregation resolution of brigade level

operations in terms of high intensity

warfighting. There will therefore be a

natural rhythm to the events that are

evaluated, lending the system to a

time stepped approach. Nevertheless

to allow flexibility, as future

components might consider

operations on very different

timescales, the model framework is

implemented in such a way that event

based processing may be easily added.

The simulation is multi-sided. To

ensure that there is no overhead in

terms of performance, as currently

there is only the requirement to

model two hostile sides, all sides are

assumed to be hostile to each other,

and do not share any intelligence

detections. Therefore a side will only

be aware of units that have been

detected by its own units.

The fire control zone model is

designed to control the operations of

Game Initialise

Step Game Step Initialise

Movement Model

Detection Model

Fire Control Zone

Artillery Model Target Selection

Damage Calculate

Close Combat Model Attacker Defender Assign

Multi Unit Combat

Damage Calculate

Step Finalise

Order Handing

Game End Criteria Evaluation

Game Finalise

Combat break-off

Damage Apply

Side Handling

S.G. Lucek ISMOR31

11
 International Symposium on Military Operational Research (ISMOR 31), July 2014

a side, defining a region and time during which one (or more) of the following are restricted:

 Artillery fire

o Precision Artillery

o General Artillery

 Close Combat

 Movement

The movement model is Arc/Node based in order to maintain compatibility with SimBrig.

A unit has a position that reflects either a Map-Node or location along an Arc.

An A* routing algorithm is included so that units take the quickest route between Map-Nodes.

Units exert zones of control that restrict the movement of enemy units.

The movement model takes into account the unit type, posture and terrain when determining

movement rates and will also allow fixing by artillery for a period determined by the (moving) unit

type.

Combat Break-off is modelled by units that are damaged passed a threshold value assuming a

defensive posture. Moving units will attempt to retreat to the Map-Node they are coming from.

Excepting this retreat the units undertake no further manoeuvre or offensive operations.

The detection model is, for the initial implementation, a visual model, with a detection range

determined from the attacker and defender unit types, posture, facing and the terrain.

Wide Area Survey is simply modelled by allowing a side automatic detection of all enemy units.

The Artillery Model element controls target selection and damage calculation of artillery operations.

Target selection is either rule based, for artillery orders entered by the user, or freely chosen by the

AI algorithm, allowing these algorithms to determine which unit represents the most suitable target.

Rule based target selection is based on a simple algorithm that identifies the enemy unit in range

that corresponds to largest threat closest to a friendly unit.

The Close Combat model element controls the target selection and damage calculation of close

combat operations. Close combat will occur when units of different sides are close enough, each

type of unit having a close combat range associated with it.

Based on the operation the unit is currently undertaking, a unit will be defined as either attacking or

defending when assessing the combat outcome.

If a unit can cause damage (either in an attacking or defending posture) to more than one unit it will

select the largest (in terms of attrition capability). This allows that the combat units with the highest

strength bear brunt of action – weaker combat units (such as artillery) that are supported properly

will be defended. In any one time step, a unit will be allowed to damage one unit in its forward

facing arc, and one unit in its flank facing arcs.

ISMOR31 Artificial Intelligence algorithms and new approaches to wargame simulation

12
International Symposium on Military Operational Research (ISMOR 31), July 2014

The focus of the Damage Calculation model (applied to both artillery and close combat damage

resolution) is for an aggregation resolution of brigade level operations in terms of high intensity

warfighting. Therefore a Lanchester-like damage algorithm is sufficient. Attrition rates are defined

by unit type, similar to a BAMS representation. As unit type includes the size of unit represented,

this will overcome the most obvious limitation of a Lanchester approach, in that suitable attrition

rates can be defined to represent combat between units of significantly different size.

The damage algorithm takes into account the type and state of units engaged and engaging, as well

as terrain and unit facings.

The application of damage occurs in a separate step, so that the order in which damage is calculated

does not affect the results.

The data for the wargame has been drawn from a number of sources, including the British Army

Battle Box, “The Stress of Battle” (D Rowland, 2006) and the PJHQ J5OA handy OA Guide.

To facilitate understanding of the model, data is interpreted in the most intuitive way possible. For

example, attrition is defined in fractional loss per hour.

Results
Illustrated below is a brigade level problem, where The AI is controlling Red. Blue is defending

locations in the North. Red is set objectives to defend itself in the south, and seize locations in the

north. In 20 generations of 1000 entities it comes up with credible and robust plans, selecting

suitable assets for the attack and

defence and locating where it can

exploit the flanks of blue units.

On a modern machine (intel®

Xeon® cpu e5-2620, 6 processors

at 2 GhZ) this takes 5 minutes of

processing, though rough plans

can be achieved more quickly, 1

to 2 minutes.

It is interesting to note the difference

between the two algorithms. Though

only an initial investigation has been

undertaken, the Simulated Annealing

algorithm is clearly more efficient

than the Genetic Programming.

Though more analysis would have to

be undertaken to confirm, the

preliminary impression is that it is a

better algorithm at balancing

searching the wider solution space

with honing in on areas offering

promising results. This is not

surprising given the well understood

S.G. Lucek ISMOR31

13
 International Symposium on Military Operational Research (ISMOR 31), July 2014

way in which the Simulating Annealing method explores the solution space, as opposed to the more

heuristic Genetic Programming algorithm.

It should be noted that the Genetic Programming algorithm does seed solutions more elegantly, as it

maintains elements of all seed solutions in the initial population, whereas the Simulated Annealing

merely will use the best of all the seed solutions as applied to the current problem set, discarding

the other seed solutions. It is not clear whether this disadvantage of seeding is simply theoretical.

In practical terms it might have little impact, which would be quickly overcome by the efficiency of

the algorithm.

Conclusions
It has been demonstrated that AI algorithms, such as Simulated Annealing and Genetic Programming

can efficiently generate plans for tactical problems, in this case a brigade level land engagement,

generating plans that resemble human-like decision making.

Two elements have been key to this success.

The first is the use of Military-like syntax in formulating the solutions the algorithms work with.

Secondly is that, utilising the generic nature of the AI algorithms, the toolset has been able to

employ a “plug-and-play” architecture. This enables the use of a META model that allows the AI to

generate plans against a reduced problem set which represents only the essential elements of the

full problem. The solution generated can then be assessed against the full problem (for example

SimBrig). This approach allows the META model to be simple, fast and robust, overcoming the

traditional limitations of the AI techniques employed, which require the evaluation of many plans,

and also have a tendency to exploit loopholes in the logic of the evaluation models.

The META model has also demonstrated a successful approach to wargame simulation.

Concentrating on modelling only what is required for the problem considered, to a suitable level of

detail, has enabled building a comprehensive and credible simulation of brigade level land

engagements from scratch, achieved on a limited budget and timescale.

The Mission Planner will allow an exploration of a larger area of the potential solution space than

can be explored by human scripting of behaviour. In particular it will allow for a wider range of

possible Red reactions for particular courses of action and improve understanding of the value of

information. The next step is imbed the Mission Planner within a model to test its ability to plan in a

dynamic situation.

References
Y. Azaria and M. Sipper (2005). GP-gammon: Genetically programming backgammon players. Genetic

Programming and Evolvable Machines, 6(3):283–300, September 2005a. ISSN 1389-2576.

Y. Azaria and M. Sipper (2005). Using GP-gammon: Using genetic programming to evolve

backgammon players. In M. Keijzer, et al., editors, Proceedings of the 8th European Conference on

Genetic Programming, volume 3447 of Lecture Notes in Computer Science, pages 132–142,

Lausanne, Switzerland, 30 March - 1 April 2005b. Springer. ISBN 3-540-25436-6.

ISMOR31 Artificial Intelligence algorithms and new approaches to wargame simulation

14
International Symposium on Military Operational Research (ISMOR 31), July 2014

N.A. Barricelli (1963). "Numerical testing of evolution theories. Part II. Preliminary tests of

performance, symbiogenesis and terrestrial life". Acta Biotheoretica (16): 99–126.

British Army Battle Box, British Army, AC 71632, Edition 13, Army Publications, Army Media &

Comm, IDL 407, Ground Floor, Zone 2, Ramillies Building, Marlborough Lines, Andover, SP11 8HJ,

http://www.baebb.dii.r.mil.uk/baebb/

V. Černý (1985). "Thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm". Journal of Optimization Theory and Applications 45: 41–51.

A. Fraser, D. Burnell (1970). Computer Models in Genetics. New York: McGraw-Hill. ISBN 0-07-

021904-4

A. Hauptman and M. Sipper (2005). GP-endchess: Using genetic programming to evolve chess

endgame players. In M. Keijzer, et al., editors, Proceedings of the 8th European Conference on

Genetic Programming, volume 3447 of Lecture Notes in Computer Science, pages 120–131,

Lausanne, Switzerland, 30 March - 1 April 2005. Springer. ISBN 3-540-25436-6.

A. Hauptman and M. Sipper (2007). Evolution of an efficient search algorithm for the mate-in-N

problem in chess. In M. Ebner, et al., editors, Proceedings of the 10th European Conference on

Genetic Programming, volume 4445 of Lecture Notes in Computer Science, pages 78–89, Valencia,

Spain, 11 - 13 April 2007. Springer. ISBN 3-540-71602-5.

D. Jackson (2005). Evolving defence strategies by genetic programming, In M. Keijzer, et al., editors,

Proceedings of the 8th European Conference on Genetic Programming, volume 3447 of Lecture

Notes in Computer Science, pages 281-290, Lausanne, Switzerland, 30 March - 1 April 2005.

Springer. ISBN 3-540-25436-6.

J. Lohn, G. Hornby, and D. Linden (2004). Evolutionary antenna design for a NASA spacecraft. In U.-

M. O’Reilly, et al., editors, Genetic Programming Theory and Practice II, chapter 18, pages 301–315.

Springer, Ann Arbor, 13-15 May 2004. ISBN 0-387-23253-2.

J. R. Koza (1992). Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge, MA, USA, 1992. ISBN 0-262-11170-5.

J. R. Koza, F. H. Bennett, III, and O. Stiffelman (1999). Genetic programming as a Darwinian invention

machine. In R. Poli, et al., editors, Genetic Programming, Proceedings of EuroGP’99, volume 1598 of

LNCS, pages 93–108, Goteborg, Sweden, 26-27 May 1999. Springer-Verlag. ISBN 3-540-65899-8.

S. Luke (1998). Evolving soccerbots: A retrospective. In Proceedings of the 12th Annual Conference

of the Japanese Society for Artificial Intelligence, 1998. (The simulation of teams of softbot programs

in simulated soccer matches)

N. Metropolis, et al. (1953). "Equation of State Calculations by Fast Computing Machines". The

Journal of Chemical Physics 21 (6): 1087

PJHQ J5OA handy OA Guide, undated note, PJHQ

S.G. Lucek ISMOR31

15
 International Symposium on Military Operational Research (ISMOR 31), July 2014

R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic programming (2008). Published via

http://lulu.com and freely available at http://www.gp-field-guide.org.uk, 2008. (With contributions

by J. R. Koza)

W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery (2007). "Section 10.12. Simulated

Annealing Methods". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York:

Cambridge University Press. ISBN 978-0-521-88068-8

H. Robbins and S. Monro (1951). "A Stochastic Approximation Method". Annals of Mathematical

Statistics 22 (3): 400–407.

D Rowland (2006). The Stress of Battle, Quantifying Human Performance in Combat, The Stationary

Office, ISBN 0-11-773046-7

Y. Shichel, E. Ziserman, and M. Sipper (2005). GP-robocode: Using genetic programming to evolve

robocode players. In M. Keijzer, et al., editors, Proceedings of the 8th European Conference on

Genetic Programming, volume 3447 of Lecture Notes in Computer Science, pages 143–154,

Lausanne, Switzerland, 30 March - 1 April 2005. Springer. ISBN 3-540-25436-6.

J. C. Spall (2003). Introduction to Stochastic Search and Optimization. Wiley. ISBN 0-471-33052-3

Zhao Le, et al. (2014). Optimizing the train timetable for a subway system, Proceedings of the

Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 13 March 2014

Biography
Stephen graduated from Imperial College in 1994 with a PhD in Numerical and Theoretical

Astrophysics. He continued his research interests at Imperial College as a Research Associate for a

further 6 years. His papers in galactic plasma jet formation and high-energy cosmic ray acceleration

enjoy success, and are still widely cited within the community. In 2000 Stephen joined NSC, working

mainly in the field of artificial intelligence algorithms within war-gaming systems (both for NSC and

Dstl programmes of work) and support of HQ commander and staff training exercises.

Simon graduated from Queen Mary and Westfield College in 1998 with a PhD in Astronomy. He

continued his research interests at Queens University Belfast as a Research Fellow for a further 5

years. Simon’s research focused on mathematical modelling, in particular the dynamics of minor

bodies of the Solar System. In 2003 Simon joined Dstl, working mainly in the field of campaign level

simulation of combat operations. In order to improve these simulations he started investigating the

use of artificial intelligence algorithms within war-gaming systems 6 years ago.

