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Artificial intelligence algorithms and new approaches to 

wargame simulation 
S.G. Lucek, NSC1  & S.J. Collander-Brown, Dstl2 

Abstract 
The Mission Planner is a decision-making toolset developed by NSC for Dstl currently 

applied at tactical level.  It aims to support Dstl high intensity warfighting simulations by 

reducing or eliminating the need for complex pre-scripting or human-in-the-loop. 

Different stochastic optimisation Artificial Intelligence (AI) techniques have been used 

(Genetic Programming and a novel implementation of Simulated Annealing).  The 

algorithms have been employed in a generic architecture that allows simple application 

to different problems. 

This flexibility allows the AI to generate plans against a reduced problem set (a Meta 

model) which represents only the essential elements of the full problem.  The solution 

can then be evaluated against the full problem set, in this case SimBrig assessing 

brigade level land engagements.  This approach has successfully overcome some of the 

limitations traditionally associated with the AI techniques used. 

Formulating the problem in a novel way, using military-like syntax, means that the AI 

algorithms efficiently generate plans for tactical problems that resemble human-like 

decision making. 

This paper presents the approach and techniques used in both the AI algorithms and the 

Meta wargame simulation.   

Introduction 
The Mission Planner is a decision-making toolset developed by NSC for use in Dstl high intensity 

warfighting simulations.  It automatically develops plans for allocating forces in space and time in 

order to achieve a particular objective, in a situation of partial knowledge and where the enemy is 

also planning.   

Traditionally Dstl models have approached such problems by building complex pre-scripted orders or 

by using a human-in-the-loop.  These approaches can, in principle, represent human decision making 

in a reasonably accurate manner but at the cost of time (and therefore money) in the set up and/or 

running of the model.  These constraints can severely limit their practical application. 

The Mission Planner has been developed to use two different stochastic optimisation AI techniques 

in order to solve tactical problems in a number of wargames, so that they can play one or more 

sides.  The programme of work was started to support the model CLARION, and the AI algorithms 
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have been applied to: a proof-of-concept test bed (in order to better understand the capabilities and 

limitations of the algorithms employed), SimBrig and a bespoke brigade level land simulation, META. 

Stochastic Optimisation 
Stochastic Optimisation is a family of techniques for solving any generalised problem.  These are 

often applied to complex problems, where it is impractical to go through all possible solutions (called 

the solution space) to determine the optimum.  These techniques randomly explore a subset of the 

solution space in a rigorous mathematical 

fashion, to arrive at a “good” solution to the 

problem, though not necessarily guaranteed to 

be the best solution.  An important aspect of 

these techniques is that they balance exploring 

avenues that offer promising results with 

searching the full solution space.  Therefore 

they are able to find a globally “good” solution 

rather than the best solution in a local area of 

the solution space, as illustrated in the 

adjacent picture. 

The general approach was first considered by 

H. Robbins and S. Monro (1951) and is 

summarised in J. C. Spall (2003). 

Traditionally these techniques are applied to a wide range of problems, including wargaming (D. 

Jackson, 2005) timetabling (Zhao Le, et al., 2014) and scheduling (e.g. the travelling salesmen 

problem, V. Černý, 1985), game solutions (e.g.  chess: A. Hauptman, M. Sipper 2005 and 2007; black 

gammon: Y. Azaria, M. Sipper, 2005; soccer bots: S. Luke, 1998; and robocode: Y. Shichel, et al. 2005) 

and circuit and antennae design (J.R. Koza et al., 1999, J. Lohn, et al., 2004). 

Genetic Algorithm Overview 
Genetic algorithms have a long history of use as an optimisation technique.  N.A.  Barricelli (1963) 

simulated evolution techniques to play a simple game, and the methods are described in books by A. 

Fraser, D. Burnell (1970). 

The Genetic Algorithm technique has an abstract representation of a candidate solution to a 

problem, referred to as an Entity.  This is typically a bit stream, a binary string of 0s and 1s.  These 

are then translated into a solution to a specific problem by a process called decoding.  For a 

wargame example, the 0s and 1s could translate to an order set: 

 Move   000 

 Attack   001 

 Defend   010 

 Support   011 

 Retreat from  100 

The following bits could represent input values to the order, for example the actor or target units, 

timings, areas etc. 
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An order sequence across the units in the wargame could then be built up from the bit stream. 

This order set is then evaluated in a wargame model to obtain a “fitness measure”, a quantitative 

measure of how good the solution is. 

A population of Entities is considered, randomly initialised. 

This population is then evolved in generations, with parent solutions chosen by a method that 

mimics survival of the fittest, representing evolutionary pressure.  Children are then generated by 

mutation and/or crossover of the bit streams of the parents. 

A ‘best’ solution is then achieved after a number of generations. 

The selection of parents is based on their measure of fitness, which enables the population to evolve 

to fitter solutions.  The selection technique must maintain genetic diversity in order to arrive at a 

globally good solution, as a solution might have poor fitness, but consist of good elements that only 

need slight change to achieve a good result. 

Tournament selection is one method that achieves this.  When selecting a parent, first a number of 

candidates are chosen at random (regardless of their fitness).  The best out of these is then selected.  

This ensures that a small number of well fitted but related entities are not always selected, 

swamping the population. 

The fitness measure is core to all Stochastic Optimisation algorithms.  A good measure of fitness 

allows algorithm to correctly apply selection pressure and ensures fittest elements of population are 

evolved.   

For the wargame example the fitness measure is obtained by first decoding an entity to an order set.  

These orders are then run through the evaluation wargame simulation and the results are assessed 

in terms of losses, achievements (positions held or denied from the enemy, or enemy losses or 

neutralisation), risk (enemy proximity and whether own units are mutually supporting), and 

efficiency (minimum resource consumption).   

Great care should be taken that the fitness measure should be well understood and constrained, 

which can often be difficult in the case of “bad” solutions.  A quantitative measure of success or 

fitness is important so as to properly select between two possible solutions and to allow the 

algorithm to navigate around “bad” solutions and explore the full solution space.  This is most easily 

achieved by very clear and rigorous normalisation of all fitness measures and parameters. 

It is important to note that Stochastic Optimisation techniques are notorious for finding loopholes in 

the logic of the evaluation model and metrics used for fitness measurement.  This is because the 

algorithm has no understanding of the problem solved; as far as it is concerned it is simply swapping 

0s and 1s and it has no concept as to why the resultant solution is good or bad.   

Although this finding of loopholes is problematic if the goal is to find the “best” solution to a 

problem it can be advantageous.  In particular by exposing the loopholes it provides a method of 

assisting in the verification and validation of complex models.  
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Genetic Programming 
The first statement of modern "tree-based" 

genetic programming was given by N.L. 

Cramer (1985).  The methods are described in 

J.R. Koza (1999) and R. Poli, et al. (2008). 

Genetic Programming is a subset of Genetic 

Algorithms.  The difference is that, instead of 

a bit stream of 0s and 1s, a candidate solution 

is made up of a node/input tree as illustrated 

in the adjacent example. 

Assuming the simulation starts at a time T, the 

nodes translate as follows: 

 Attack advance by actor unit A moving (and attacking if in range) target B, starting at time T 

ending at time T+C 

 Unit A moves towards location D, starting at time T+C (the time actor A finishes its previous 

action represented by node a) finishing at time T+C+E 

 Unit L moves towards (and defends if in range) location D starting at time T and ending at 

time T+A 

 Unit A moves towards (and defends if in range) unit I, starting at time T+C+E (the time actor 

A finishes its previous action represented by node b) and ending at time T+C+E+K) 

 Unit F moves towards (and supports if in range) unit I, starting at time T and ending at time 

T+J 

 Unit F moves towards (and attacks if in range) target G, starting at time T+J (the time actor F 

finishes its previous action represented by node e) and ending at time T+J+H 

It is important to note that whilst a wargame example has been illustrated, in a Genetic Algorithm an 

entity is simply a node tree, each node having a number of input values and node children.  The 

algorithm has no concept of what a node or input might mean, and it is only at the decoder stage 

that it is determined how each node translates to an order. 

In principal, there is no difference between the mathematics of a bit stream Genetic Algorithm and a 

node tree Genetic Programming algorithm.  However, it is much easier to write a decoder that 

efficiently translates the Entity, in its generic form, to a solution for a particular problem. 

Algorithm efficiency is vital for any Stochastic Optimisation technique.  Inefficient algorithms will not 

explore the solution space as convergence to a good solution requires a good probability of 

generating better solution from each generation otherwise potential improvements are lost.  It is 

not the case that an inefficient algorithm will simply converge more slowly to a “good” solution; it 

might never converge at all. 

An efficient algorithm must produce Entities with measurable fitness to allow comparison between 

Entities in order that the proper selection pressure is applied for evolution.  “Bad” solutions are 

important in terms of the algorithm being able to explore the full solution space.  There must, 

however, be a sensible measure of how “bad” these solutions are, so that the algorithm can navigate 
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to better solutions.  Therefore it is vital that Entities must always decode to a feasible solution (for 

example an order set) that can be measured, and that any change in the Entity (in its generic form) 

translates to a meaningful change in the translated solution.   

This efficient decoding is much simpler for a node/input tree of a Genetic Programming algorithm 

than it is for a bit stream.  However, it should be noted that there is no necessary difference 

between a Genetic Programming 

technique and a bit stream Genetic 

Algorithm with a well written 

decoder.  If an Entity is always 

translated to a valid orders set, no 

matter how that Entity is randomly 

altered, then one would not expect a 

Genetic Programming algorithm to be 

significantly different from other 

Genetic Algorithms. 

An example of a child entity generated from 

parent entities is illustrated in the adjacent 

figure. 

The crossover nodes of each parent are chosen 

at random.  The child is formed from the node 

tree above the crossover node of the first 

parent merged with the node tree below the 

crossover node of the second parent.  

Simulated Annealing 
Simulated Annealing is a well understood and efficient optimisation technique, which shares many 

similar elements to Genetic Algorithms.  The earliest form of this algorithm is the Metropolis-

Hastings algorithm, N. Metropolis, et al. (1953).  The method is described in detail in W.H. Press 

(2007).  

The concepts are analogous in form to annealing in metallurgy, a technique where heating and 

controlled cooling of a material increases the size of crystals and reduces defects in the atomic 

lattice.  It uses the same mathematics as determining probability states given the thermodynamic 

free energy.  As the Boltzmann distribution is mathematically well understood, the process is much 

better defined than the heuristic approach of Genetic Algorithms. 

A candidate solution is considered, which can be formulated using the same generic representation 

as the Genetic approaches.  A single solution is considered throughout the process, rather than a 

Defend

Value ValueValue

Actor:

Unit L

Target:

Location D
Duration:

A

Defend

ValueValue

Actor:

Unit A

Target:

Unit I
Duration:

K

Attack 

advance

Value ValueValue

Actor:

Unit A

Target:

Unit B
Duration:

C

Move 

Towards

Value Value

Actor:

Unit A

Target:

Location D

Duration:

E

Attack 

advance

Value

Actor:

Unit F

Target:

Unit G

Duration:

H

Support

Value Value

Actor:

Unit F

Target:

Unit I

Duration:

J

Defend

Value ValueValue

Actor:

Unit L

Target:

Location D
Duration:

A

Defend

ValueValue

Actor:

Unit A

Target:

Unit I
Duration:

K

Support

Value

Actor:

Unit F

Target:

Unit I
Duration:

J

Value

Duration:

B

Move 

Towards

Value Value

Actor:

Unit A

Target:

Location D

Attack 

advance

ValueValue

Target:

Unit B
Duration:

C

Actor:

Unit A

Attack 

advance

Value

Target:

Unit G

Duration:

H

Value

Actor:

Unit L

Crossover 

Node

Parent A

Parent B

Crossover 

Node

Defend

ValueValue

Actor:

Unit A

Target:

Unit I
Duration:

K

Support

Value

Actor:

Unit F

Target:

Unit I
Duration:

J

Value

Duration:

B

Move 

Towards

Value Value

Actor:

Unit A

Target:

Location D

Attack 

advance

ValueValue

Target:

Unit B
Duration:

C
Actor:

Unit A

Defend

Value ValueValue

Actor:

Unit L

Target:

Location D
Duration:

A

Attack 

advance

Value ValueValue

Actor:

Unit A

Target:

Unit B
Duration:

C

Move 

Towards

Value Value

Actor:

Unit A

Target:

Location D

Duration:

E

Attack 

advance

Value

Actor:

Unit F

Target:

Unit G

Duration:

H

Support

Value Value

Actor:

Unit F

Target:

Unit I

Duration:

H

Child



ISMOR31 Artificial Intelligence algorithms and new approaches to wargame simulation 

6 
International Symposium on Military Operational Research (ISMOR 31), July 2014 

population.  This solution is randomly perturbed to give a new solution.  The probability that the 

newly generated solution will replace the current solution as the candidate solution is given by:  

𝑒−
𝐹𝐶−𝐹𝑁
𝑇  

where T  is the “Temperature” and F is the Fitness measure of the new (N) or current (C) solutions. 

Simulated Annealing has the concept of an annealing schedule, the Temperature T, analogous to the 

thermodynamic free energy of the system.  It can be easily understood if the fitness measure is well 

constrained.  This is best achieved by very clear and rigorous normalisation of all fitness measures 

and parameters.  For example if the worst of all possible results has a fitness of 0 and the best of all 

possible results has a fitness of 100, then a temperature of 100 corresponds to a high probability 

that a poor solution will be chosen over a good one (albeit temporarily, to explore the full solution 

space), whereas a temperature of 1 will give a low probability. 

The annealing schedule is the temperature profile used to generate the solution.  Typically a high 

value of T is used initially for a given number of steps (or until a required convergence of changes in 

the fitness of the best solution found so far is reached).  This allows “bad” solutions to be explored 

freely so that a wide region of the solution space is considered.  The temperature is then lowered for 

a second round of steps, and so on.  This reduction in T constrains the area considered, until finally 

the algorithm is considering refinements to the best solutions. 

Simulated Annealing and Solution Perturbation 
One of the main problems of the application of Simulated Annealing to gaming problems is how to 

perturb the candidate solution to obtain a new solution.  Simulated Annealing is typically applied to 

problems where the free parameters are continuous and can be altered by a variable amount.  

Traditionally the solution should undergo large perturbations when considering large temperatures 

and small perturbations when considering low temperatures.  A commonly held metric is that 

perturbations that accept the perturbed candidate solution about 50% of the time are most 

efficient. 

However, the free parameters of a wargame problem are not continuous, but are discrete.  Order 

sets can be randomly altered in discrete chunks of orders and order types.  If the Entity solution is 

considered using the same Node/Input tree of the GP solution then an approach to controlling the 

scale of perturbation is much clearer.  A perturbation can be applied either to a node (by randomly 

selecting a node in the tree for the current solution and replacing it with a randomly generated node 

tree) or to the input value(s) of a node (or nodes), as a simple random change.  At high temperature, 

it is possible to favour Node perturbations (which represent a larger change to the solution than 

input changes) and also to favour nodes with many descendants.  Input changes at high temperature 

would change multiple inputs.  To the author’s knowledge, such an approach has not been used 

before. 

Seeding the initial population 
It is possible to seed the initial random population with an individual or group of individuals that 

represent a good starting point.  These might be from the population obtained from previous runs of 

the algorithm for a situation that has now evolved, or, alternatively, they might be constructed by 
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the user.  There is a danger that if the seed individuals are much better than the randomly created 

trees, then their descendants can take over the population rapidly with a loss of genetic diversity.  In 

these cases it is often more successful to control this diversity loss by initialising the whole 

population to either identical or mutated copies of the seed individuals. 

The Mission planner toolset allows saving entity solutions (in their generic form) to a plan store.  

These stored plans represent a library of solutions that can then be used as seed solutions for future 

runs of the toolset. 

Stochastic Optimisation, limitations 
Stochastic Optimisation techniques, traditionally, have a number of limitations. 

First, they are slow.  Typically, for a brigade level problem, it might require evaluation of some tens 

of thousands of possible solutions to reach a reasonable solution.  Even if each evaluation takes a 

millisecond this would mean the time taken for a solution would be measured in tens of seconds. 

Also the algorithms have no concept or understanding as to why a 

solution might be good.  This has a tendency of generating solutions in 

response to the exact detail of the problem posed, rather than 

necessarily a solution that is applicable to a wide range of problems.  This 

makes these techniques excellent at, for example, circuit or antennae 

design (J.R. Koza et al., 1999, J. Lohn, et al., 2004), where they are able to 

come up with novel solutions that are not naturally intuitive, as 

illustrated in the adjacent figure.  However they are not necessarily 

suitable for arriving at doctrinally correct solutions that reflect the perceived wisdom of, for 

example, the Staff Officers Handbook, for a wargame problem, unless heavily constrained. 

As discussed above Stochastic Optimisation techniques are also famous for exploiting loopholes in 

the problem posed. These might be in the fitness criteria by which a solution is assessed, or else in 

the logic of the evaluation model.  This arises, again, from the fact that the algorithms have no 

concept or understanding as to why a solution is good. 

Any implementation of these techniques will have to take into account these limitations, either 

accepting them, or finding solutions.   

The Mission Planner addresses these limitations in a number of ways, detailed in the following 

sections.  The first is to consider a solution against a range of plans, to ensure solutions are suited to 

a range of problems.  The second is by using a military-like syntax for the decoding of order sets, 

allowing for efficient generation of plans that resemble human-like decision making.  Lastly the 

generic form of the algorithms has been exploited to allow solving against a range of plan 

evaluators, including a reduced problem set (a Meta model).  This represents only the essential 

elements of the full problem, enabling the use of algorithms that are both extremely robust and 

execute quickly. 

Mission Planner 
The mission planner is a toolset that applies the AI algorithms to a problem set in an iterative 

approach as illustrated in the figure below: 
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Each iteration evolves a full solution 

for a problem set, using the previous 

iteration’s best solution(s) or solution 

population.  The new iteration might 

change any of the following: the side 

being considered (for example in the 

first iteration generating Red plans 

and then in a second iteration 

generating plans for Blue to counter 

these), the AI algorithm control 

parameters (for example one 

iteration might set parameters that control the solution space more widely, whilst a second might 

set parameters to examine more closely the areas representing the best solutions), or a new set of 

problems could be considered that might, for example, represent a changing or evolving situation. 

The first stage of each iteration is the retrieval of the entities that reflect the current best solution(s) 

or solution population for sides opposing the side that is going to be evolved in this iteration.  These 

are then decoded to represent opposing plans.  Also the best solution(s) or solution population is 

retrieved for the side being evolved.  If the side being evolved has not been considered by any 

previous iteration then solution(s) or solution populations are generated at random or from a 

specified seed (or seeds) from the plan store. 

 The problem set consists of one or more scenarios.  A generic solution is decoded as an order set for 

each of these scenarios, and the measure of fitness obtained for each.  A final, overall fitness is 

obtained, weighting the fitness obtained for the best, worst and intermediate individual scores.  This 

ensures that the solution obtained is good against a wide variety of problems and is not limited to 

the specific details of a single 

problem.  It also permits solution 

of problems where there is 

uncertainty in the problem posed, 

for example, if Blue has does not 

have a clear view of Red forces, a 

number of scenarios could be 

considered. 

Mission Planner, Generic 

Architecture 
As has been discussed, the AI 

algorithms work with a completely 

generic form of solution that can 

be applied to any problem.  The 

only problem specific element is 

the decoder, which takes a 

solution, in its generic form, and 

translates it to a solution for a 
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specific problem, in this case an order set for a wargame simulation.  This specific solution is then 

evaluated to obtain a fitness score, which the AI algorithm then stores against the generic form of 

the solution to determine its use in exploring the full problem space. 

The architecture of the Mission Planner exploits the generic nature of the algorithms employed to 

allow it to consider any problem, as illustrated in the above figure. 

Decoders can be written in a plug and play fashion to consider problems of a completely different 

form.  The inter-changeability of decoders means that one decoder can be used to assess solutions 

during the solution evolution process (the plan evaluator), whilst a different decoder can be used to 

view and assess the best solution arrived at (the solution view). 

The adjacent figure demonstrates this with decoders for plan evaluation and solution views for both 

the META model and SimBrig 

Military Syntax 
The mission planner uses a military-

like syntax for decoding of order 

sets, i.e. for translating a generic 

solution into an order set.  This 

method is currently used for both 

the SimBrig and META decoders. 

The concepts in a military synch 

matrix are used, an example of 

which is illustrated in the adjacent 

figure.   

The nodes in the generic solution are 

translated into Areas and Timelines 

and Manoeuvre/Support orders.  The 

inputs determine which locations correspond to each area in the solution, and the times of the 

timelines.  Inputs for each Manoeuvre/Support order determine which areas and timelines are 

associated with that Manoeuvre/Support order.   

In this way units naturally co-operate in time and space.  By using this military syntax, the order set 

generated naturally looks human like.  It also greatly enhances efficiency.  For example, it can readily 

be seen that a “generically” good order set can be generated, which determines how units are to co-

operate, by the way each unit’s orders are linked to areas and timelines.  A solution that is good for 

one problem can be applied to a different problem simply by changing the specifics of the locations 

of the areas and the timings of the timelines.   The AI algorithms will exploit such efficiencies when 

randomly generating solutions. 

To the authors knowledge this is the first time that this approach has been used for Stochastic 

Optimisation algorithms applied to a wargame problem. 
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META 
The META wargame model (Model for EngagemenT Analysis) is a bespoke model to evaluate a 

brigade level land engagement.   It has been specifically developed to meet the requirements of the 

AI algorithms of the Mission Planner, which are for a plan evaluation model that is fast and robust, 

i.e. has no loopholes in the logic of its evaluation algorithms and that will also successfully evaluate 

all order sets, no matter how nonsensical they might seem.  This is important for the AI algorithms, 

as they need to consider “bad” solutions, to be able to assign a quantitative measure of fitness to 

enable the algorithm to navigate to “good” solutions whilst still exploring the full solution space. 

The guiding principle of the META model has been simplicity.  The algorithms have been streamlined 

to represent only the essential elements of the full problem, in order to avoid unintentional 

complexity.  The simplicity of the approach has also facilitated a clear and flexible model framework 

and architecture into which new algorithm modules might be added, or old ones replaced. 

The figure below illustrates the META model elements. 

As higher level land operations are being considered (in the first instance at brigade level), military 

forces are grouped together into aggregated units.  A unit is defined by a type, representing both the 

size and military type/role, for example; British Infantry Battalion, British Tank Regiment etc. 

The focus of the model is for an 

aggregation resolution of brigade level 

operations in terms of high intensity 

warfighting.  There will therefore be a 

natural rhythm to the events that are 

evaluated, lending the system to a 

time stepped approach.  Nevertheless 

to allow flexibility, as future 

components might consider 

operations on very different 

timescales, the model framework is 

implemented in such a way that event 

based processing may be easily added.  

The simulation is multi-sided.  To 

ensure that there is no overhead in 

terms of performance, as currently 

there is only the requirement to 

model two hostile sides, all sides are 

assumed to be hostile to each other, 

and do not share any intelligence 

detections.  Therefore a side will only 

be aware of units that have been 

detected by its own units. 

The fire control zone model is 

designed to control the operations of 
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Artillery Model Target Selection

Damage Calculate

Close Combat Model Attacker Defender Assign 

Multi Unit Combat
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a side, defining a region and time during which one (or more) of the following are restricted: 

 Artillery fire 

o Precision Artillery 

o General Artillery 

 Close Combat 

 Movement 

The movement model is Arc/Node based in order to maintain compatibility with SimBrig. 

A unit has a position that reflects either a Map-Node or location along an Arc. 

An A* routing algorithm is included so that units take the quickest route between Map-Nodes.   

Units exert zones of control that restrict the movement of enemy units. 

The movement model takes into account the unit type, posture and terrain when determining 

movement rates and will also allow fixing by artillery for a period determined by the (moving) unit 

type. 

Combat Break-off is modelled by units that are damaged passed a threshold value assuming a 

defensive posture.  Moving units will attempt to retreat to the Map-Node they are coming from.  

Excepting this retreat the units undertake no further manoeuvre or offensive operations. 

The detection model is, for the initial implementation, a visual model, with a detection range 

determined from the attacker and defender unit types, posture, facing and the terrain. 

Wide Area Survey is simply modelled by allowing a side automatic detection of all enemy units. 

The Artillery Model element controls target selection and damage calculation of artillery operations. 

Target selection is either rule based, for artillery orders entered by the user, or freely chosen by the 

AI algorithm, allowing these algorithms to determine which unit represents the most suitable target. 

Rule based target selection is based on a simple algorithm that identifies the enemy unit in range 

that corresponds to largest threat closest to a friendly unit. 

The Close Combat model element controls the target selection and damage calculation of close 

combat operations.  Close combat will occur when units of different sides are close enough, each 

type of unit having a close combat range associated with it. 

Based on the operation the unit is currently undertaking, a unit will be defined as either attacking or 

defending when assessing the combat outcome. 

If a unit can cause damage (either in an attacking or defending posture) to more than one unit it will 

select the largest (in terms of attrition capability).  This allows that the combat units with the highest 

strength bear brunt of action – weaker combat units (such as artillery) that are supported properly 

will be defended.  In any one time step, a unit will be allowed to damage one unit in its forward 

facing arc, and one unit in its flank facing arcs. 
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The focus of the Damage Calculation model (applied to both artillery and close combat damage 

resolution) is for an aggregation resolution of brigade level operations in terms of high intensity 

warfighting.  Therefore a Lanchester-like damage algorithm is sufficient.  Attrition rates are defined 

by unit type, similar to a BAMS representation.  As unit type includes the size of unit represented, 

this will overcome the most obvious limitation of a Lanchester approach, in that suitable attrition 

rates can be defined to represent combat between units of significantly different size. 

The damage algorithm takes into account the type and state of units engaged and engaging, as well 

as terrain and unit facings. 

The application of damage occurs in a separate step, so that the order in which damage is calculated 

does not affect the results. 

The data for the wargame has been drawn from a number of sources, including the British Army 

Battle Box, “The Stress of Battle” (D Rowland, 2006) and the PJHQ J5OA handy OA Guide. 

To facilitate understanding of the model, data is interpreted in the most intuitive way possible.  For 

example, attrition is defined in fractional loss per hour. 

Results 
Illustrated below is a brigade level problem, where The AI is controlling Red.  Blue is defending 

locations in the North.  Red is set objectives to defend itself in the south, and seize locations in the 

north.  In 20 generations of 1000 entities it comes up with credible and robust plans, selecting 

suitable assets for the attack and 

defence and locating where it can 

exploit the flanks of blue units.  

On a modern machine (intel® 

Xeon® cpu e5-2620, 6 processors 

at 2 GhZ) this takes 5 minutes of 

processing, though rough plans 

can be achieved more quickly, 1 

to 2 minutes. 

It is interesting to note the difference 

between the two algorithms.  Though 

only an initial investigation has been 

undertaken, the Simulated Annealing 

algorithm is clearly more efficient 

than the Genetic Programming.  

Though more analysis would have to 

be undertaken to confirm, the 

preliminary impression is that it is a 

better algorithm at balancing 

searching the wider solution space 

with honing in on areas offering 

promising results.  This is not 

surprising given the well understood 
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way in which the Simulating Annealing method explores the solution space, as opposed to the more 

heuristic Genetic Programming algorithm. 

It should be noted that the Genetic Programming algorithm does seed solutions more elegantly, as it 

maintains elements of all seed solutions in the initial population, whereas the Simulated Annealing 

merely will use the best of all the seed solutions as applied to the current problem set, discarding 

the other seed solutions.  It is not clear whether this disadvantage of seeding is simply theoretical.  

In practical terms it might have little impact, which would be quickly overcome by the efficiency of 

the algorithm. 

Conclusions 
It has been demonstrated that AI algorithms, such as Simulated Annealing and Genetic Programming 

can efficiently generate plans for tactical problems, in this case a brigade level land engagement, 

generating plans that resemble human-like decision making. 

Two elements have been key to this success. 

The first is the use of Military-like syntax in formulating the solutions the algorithms work with. 

Secondly is that, utilising the generic nature of the AI algorithms, the toolset has been able to 

employ a “plug-and-play” architecture.  This enables the use of a META model that allows the AI to 

generate plans against a reduced problem set which represents only the essential elements of the 

full problem.  The solution generated can then be assessed against the full problem (for example 

SimBrig).  This approach allows the META model to be simple, fast and robust, overcoming the 

traditional limitations of the AI techniques employed, which require the evaluation of many plans, 

and also have a tendency to exploit loopholes in the logic of the evaluation models. 

The META model has also demonstrated a successful approach to wargame simulation.  

Concentrating on modelling only what is required for the problem considered, to a suitable level of 

detail, has enabled building a comprehensive and credible simulation of brigade level land 

engagements from scratch, achieved on a limited budget and timescale. 

The Mission Planner will allow an exploration of a larger area of the potential solution space than 

can be explored by human scripting of behaviour.  In particular it will allow for a wider range of 

possible Red reactions for particular courses of action and improve understanding of the value of 

information.  The next step is imbed the Mission Planner within a model to test its ability to plan in a 

dynamic situation.  
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