

COMPARING OBSERVATION
SATELLITE CONSTELLATIONS – A
NOVEL APPROACH USING BINARY
INTEGER PROGRAMMING

ISMOR July 2015

Introduction

- The last decade has seen major development of Satellite capabilities:
 - Better resolution
 - Larger coverage
 - Commercially available Multi spectral and SAR images
 - Reduction of costs etc.
- Growing reliance on satellite images (where once other options were necessary)

Introduction (2)

- Sinusoidal ground track
- Sensors
- Imaging trade-off

OBJECTIVE

- A quantitative comparison of 3-satellite constellation vs. 2-satellite constellation
 - By assessing the imagery abilities of each satellite constellation

METHODOLOGY

Requirements

Identify different satellite image consumers

Define primary requirements (with relevant consumers)

Map crucial requirement parameters

Build requirement DB according to relevant parameters

Constellations

Create satellite opportunity DB

Analyze
satellite DB vs.
requirement
DB (allocation
problem)

Provide recommendations

SATELLITE OPPORTUNITY DB

Location	Satellite	Time stamp	Resolution	Pass duration
20° latitude	Sat.1 (EO)	Jan. 01 2013 00:12:16	MAX	46s
20° latitude	Sat.2 (SAR)	Jan. 01 2013 03:25:08	Sub 3m	54s
20° latitude	Sat.1 (EO)	Jan. 01 2013 05:07:38	Sub 3m	10s
20° latitude	Sat.1 (EO)	Jan. 01 2013 12:56:20	MAX	72s
20° latitude	Sat.2 (SAR)	Jan. 01 2013 16:32:00	MAX	85s
•••	•••	•••	•••	•••

REQUIREMENT EXAMPLES

Ecological requirements

Natural disaster recovery

infrastructure mega-projects

REQUIREMENT PARAMETERS EXAMPLES

Requirement	Avalanche detection	Drug trafficking	Animal Migration
Number of sites	1	3	130
Image type	EITHER	EO	EO
Image resolution	max	max	Sub 3 m
Revisit frequency	Daily	Hourly or at least 4 times a day	Weekly
Longest period without image	34 h	4.3 h	10 d
Minimal success	80%	100%	75%
Total duration	6 m	3 d	Year round
Location	Specific (Nepal)	Semi -Specific (Border)	Non -Specific

APPROACH

 Quantitative measure required → Probability of meeting the requirement → Based on solving an allocation problem

Naïve approach → greedy algorithm

- Fails with mixed image requirement
- Inefficient
- Does not allow estimation of total load

Optimization model

- Binary programming → optimally allocate each opportunity
- Only works for small-medium problem
- Allows load estimation

*Neither method allows for direct load analysis

PROBLEM STATEMENT

 Solve the allocation problem using binary integer programming

• Main steps:

Set the constraints

Run

solver

Choose the objective function

Define the decision variables

Mathematical formulation — decision variables

o "Allocation opportunity" as the decision variable

- Where:
- K number of sites in the requirement
- N number of relevant satellite passes
- $\circ \{x_1 \dots x_{N \cdot K}\}$ The decision variables vector
 - x_i represents the allocation of pass floor(i/N) to site mod(i, K)

MATHEMATICAL FORMULATION — OBJECTIVE FUNCTION

- Is there a need for an objective function?
- Our objective → Minimize the total sum of allocated images
 - allows to calculate the load per requirement, hence estimate the total requirement capacity

$$\min(f) = \min(\sum_{i=1}^{N \cdot K} x_i)$$

Mathematical formulation — constraints (1)

- Potential images constraint:
 - Each satellite pass allows for a given # of potential images per area

$$\forall j \in (1, N), \qquad \sum_{l=(j-1)\cdot K+1}^{j\cdot K} x_l \le n_j$$

- Where:
- o n_j the total number of images for a given area in the j-th pass

Mathematical formulation — constraints (2)

- Minimal necessary allocations constraint:
 - For each site in the requirement there is a minimal necessary allocation of at least p images

$$\forall k \in (1, K), \qquad \sum_{r=1}^{N} x_{(r-1)\cdot K+k} \ge p$$

Mathematical formulation — constraints (3)

- Minimal necessary allocations constraint 2:
 - Each site may also contain separate SAR and EO allocation

$$\forall k \in (1, K), \forall s \in N_{SAR}, \qquad \sum_{s} x_{(s-1) \cdot K+k} \ge p_{SAR}$$

$$\forall k \in (1, K), \forall q \in N_{EO}, \qquad \sum_{q} x_{(q-1) \cdot K+k} \ge p_{EO}$$

- Where:
- p_{SAR} the min # of SAR images; p_{EO} the min # of EO images;
- \circ N_{SAR} the total SAR capacity in the relevant time period;
- \circ N_{EO} the total EO capacity in the relevant time period.

Mathematical formulation — constraints (4)

- Maximum time between allocations constraint:
 - For each requirement there is a maximal time allowed between two allocations

- Where:
- \circ Y_n the number of passes within the maximal time period from the n-th pass

SOLVING THE PROBLEM

Probability of meeting the requirement

Start time		Constraint			Constraion
		2	3	4	- Conclusion
Jan 01 2013 02:03:56	1	1	✓	1	✓
May 18 2013 12:02:03	1	1	✓	*	×
March 30 2013 16:17:15	1	1	×	1	×
December 05 2013 01:18:36	1	1	✓	1	✓
May 06 2013 18:03:15	1	1	✓	1	✓
•••					
Final conclusion					60%

FULL RESULTS FOR A SINGLE REQUIREMENT

Few days with insufficient passes cause failure due to max time constraint

Latitude	2-satellite constellation	3-satellite constellation
20°	90%	100%
30°	90%	100%
40°	60 %	80%
50°	20 %	70%
60°	0%	0%

Multiple days with insufficient passes cause failure due to max time constraint

Limited # of max res passes do not allow for total # of req images

SUMMARY & CONCLUSIONS

- Our analysis points to a substantial increase in satellite relevance due to technological improvement
- Addition of third satellite improves capabilities but only slightly
- Full analysis contains:
 - Method for combining results from different requirement
 - Detailed load estimation
 - Addition of important qualitative factors
 - Budgetary limitations

THANK YOU FOR YOUR ATTENTION!