

Morphological Analysis of Defence Procurement

Dr Philippa Hiscock
Jonathan Hodges
Michael Bagg

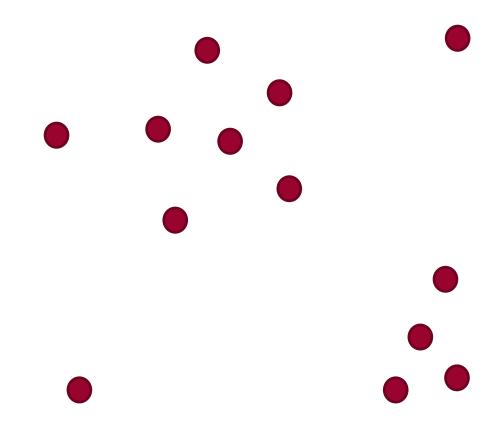
IntelligentInsight www.roke.co.uk

Defence Procurement

- What is defence procurement and why is it wicked?
 - We can't buy our way out of problems
 - How to get better by taking non-financial approaches
 - A lot of the change is in the social space
- A defence procurement problem:
 - Always has to be considered on its own merits, simply copying is not effective
 - Is owned by a range of stakeholders (e.g. military users, civilian users, legal, commercial)
 - Each stakeholder has different understandings/interpretations of the problem
 - The solution is procured as a performance, but required as an effectiveness
 - Solutions are typically good or bad rather than right or wrong

Outline

- Introduction to General Morphological Analysis (GMA)
- Extending General Morphological Analysis
 - SERAPH
 - Stakeholder confidence indicator
 - Finding representative combinations (solutions)
- Using SERAPH in the Defence Domain
- Summary



Introduction to General Morphological Analysis (GMA)

Intelligent Insight www.roke.co.uk

Morphology

The study of form and structure (options)

General Morphological Analysis (GMA)

- History:
 - Generalised by Fritz Zwicky in 1948;
 - Computational advancements by Tom Ritchey from 1995 to present day.
- Can tame <u>wicked problems</u>.
- Applicable domains include:
 - Engineering and Product Design;
 - Design Theory and Architecture;
 - Scenario Development;
 - Management Science, Policy Analysis and Organisational Design;
 - Security, Safety and Defence.

Morphological Field

The representation of the problem by the parameter dimensions and specified values (points in dimension).

Example: the procurement of a new ISTAR airplane

	Parameter A	Parameter B	Parameter C	Parameter D	Parameter E	Parameter F	Parameter G	Parameter H
	Platform	Mission Range (nm)	Sensor Type	Target Type	Crewing	Data Processing	Training of operators	Tactical Requirement
Value 1	Small TurboProp	up to 1000	IR	People	0	Onboard	No additional training for operators	Routine Reconaissance with full local support
Value 2	Large Turboprop	1000-2000	EO	Building	2-4 crew	Mixed	The Operators will need to attend a short uplift course.	Reconaissance with limited footprint
Value 3	Small Jet	2000-3000	GMTI	Vehicles	5-8 crew	Ground based	The Operators will need to attend a completely new Operator course.	Covert Operation
Value 4	Large Jet	>3000	SAR	Maritime	9-12 crew			
Value 5	Small UAV							
Value 6	Large UAV							

Let M_n represent the number of values for the nth parameter where n = 1, ..., N.

Then the total number of *formal combinations* (options) is a **product**: $\prod M_n = 41472$

$$M_1 = 6$$
 $M_2 = 4$ $M_3 = 4$ $M_4 = 4$ $M_5 = 4$ $M_6 = 3$ $M_7 = 3$ $M_8 = 3$

		Parameter A	Parameter B	Parameter C	Parameter D	Parameter E	Parameter F	Parameter G	Parameter H	
_		Platform	Mission Range (nm)	Sensor Type	Target Type	Crewing	Data Processing	Training of operators	Tactical Requirement	
	Value 1	Small TurboProp	up to 1000	IR	People	0	Onboard	No additional training for operators	Routine Reconaissance with full local support	
	Value 2	Large Turboprop	1000-2000	EO	Building	2-4 crew	Mixed	The Operators will need to attend a short uplift course.	Reconaissance with limited footprint	
	Value 3	Small Jet	2000-3000	GMTI	Vehicles	5-8 crew	Ground based	The Operators will need to attend a completely new Operator course.	Covert Operation	
	Value 4	Large Jet	>3000	SAR	Maritime	9-12 crew				
	Value 5	Small UAV								
	Value 6	Large UAV								

Cross-Consistency Assessment Matrix (CCM)

The process of analysing whether all unique pairs of parameter values are inconsistent and to what degree stakeholders believe a relationship is (in)consistent given evidence generated by the stakeholders.

The possible pair-wise relationship types are:

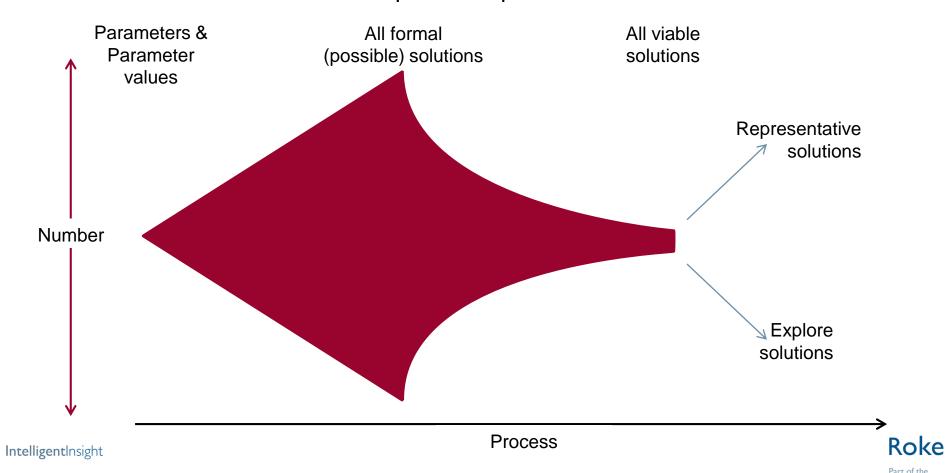
		Broad relationship							
		Consistent	Inconsistent						
Confidence	High	С-Н	IC-H						
given	Medium	C-M	IC-M						
evidence	Low	C-L	IC-L						

Cross-Consistency Assessment Matrix (CCM)

The process of analysing whether all unique pairs of parameter values are inconsistent and to what degree stakeholders believe a relationship is (in)consistent given evidence generated by the stakeholders.

The number of pair-wise relationships is a quadratic polynomial:

$$\sum_{n=1}^{N} M_n \times \left(\sum_{m=n}^{N} M_m\right) = 417$$



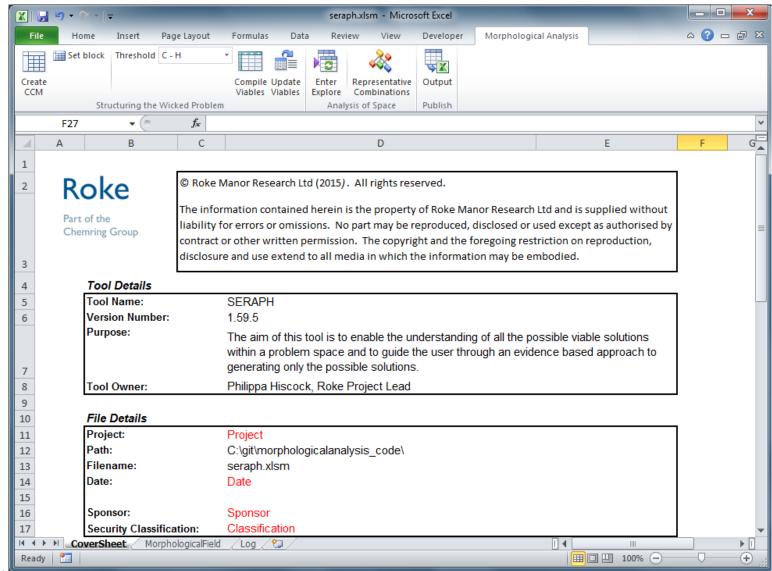
			Platform			Mission Range (nm)			Sensor Type				Target Type				Crewing				Data	Proces	ssing	Training of operators					
		Small TurboProp	Large Turboprop	Small Jet	Large Jet	Small UAV	Large UAV	up to 1000	1000-2000	2000-3000	>3000	IR	EO	GMTI	SAR	People	Building	Vehicles	Maritime	0	2-4 crew	5-8 crew	9-12 crew	Onboard	Mixed	Ground based	No additional training for operators	The Operators will need to attend a short uplift course.	The Operators will need to attend a completely new Operator course.
	up to 1000	С - Н	C - H	С-Н	С - Н	C - H	C - H																						
Mission	1000-2000	C - M	C - H	C - H	C - H	C - M	C - H																						
Range (nm)	2000-3000	C - L	C - H	C - L	C - H	IC - H	C - H																						
	>3000	IC - H	C - H	IC - H	C - H	IC - H	C - H																						
	IR	C - H	C - H	С-Н	C - H	C - H	C - H	C - H	С-Н	C - H	C - H																		
Sensor Type	EO	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H																		
School Type	GMTI	C - H	C - H	C - H	C - H	C - M	C - H	C - H	C - H	C - H	C - H																		
	SAR	C - M	C - H	C - H	C - H	IC - H	C - H	C - H	C - H	C - H	C - H	_																	
	People	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - M	C - H	IC - H	IC - H														
Target Type	Building	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - M	C - H	IC - H	C - H														
idiget type	Vehicles	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H														
	Maritime	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - M	C - M	C - M	C - H														
	0	IC - H	IC - H	IC - H	IC - H					_	_	C - H																	
Crewing	2-4 crew		C - H	C - H	C-L							C - H																	
	5-8 crew	C - M	C - H	C - H	C - H	IC - H	IC - H	C - H	C - H	C - H	C - M	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H										
	9-12 crew	IC - H	C - H	IC - H	C - H							C - H																	
Data	Onboard	-			C - H										_					_		C - H	_						
Processing	Mixed	C - H	C - H	C - H	_										_							C - H							
	Ground based	C - H	C - M	C - H	C-L	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C-L	C-L	C - H	C - M	C - H	C - H	C - M	C - M	C - L						
	No additional training for operators	IC - H	IC - H	IC - H	IC - H	C - M	C - L	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	IC - H	C - L	C - M	C - H	C - H	C - H	C - H			
Training of operators	The Operators will need to attend a short uplift course.	С-Н	C - M	С - Н	C - M	С - Н	C - M	С - Н	С - Н	С-Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	C - M	C - M	С - Н	С - Н	С - Н	С - Н	С - Н			
	The Operators will need to attend a completely new Operator course.	C - M	С-Н	C - M	С - Н	C - M	С-Н	С - Н	С - Н	С-Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н			
Tactical	Routine Reconnaissance with full local support	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н
Requirement	Reconnaissance with limited footprint	С - Н	C - L	С-Н	C - M	С-Н	C - M	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	С - Н	C - L	IC - H	С - Н	С - Н	С - Н	С - Н	C - H	С - Н
	Covert Operation	IC - H	IC - H	C - H	C - H	C - H	C - H	IC - H	C - M	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	C - H	IC - H	IC - H	C - H	C - H	C - H	C - H	C - H	C - H

In Summary

• A method for the generation of a comprehensive and viable set of representative solutions from a multidimensional problem space with an auditable trail.

Benefits of GMA

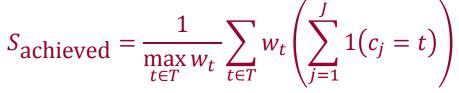
- Promotes understanding of complex and fully/partially unquantifiable problems
- Complete transparency
- Framework for characterisation of the problem space
- Stakeholders own the problem definition
- All defined aspects of the problem and solution spaces are explicitly considered
- Possible options are exhaustively generated in a rigorous and unbiased manner
- Provably considered all possible options



Extending General Morphological Analysis

Intelligent Insight www.roke.co.uk

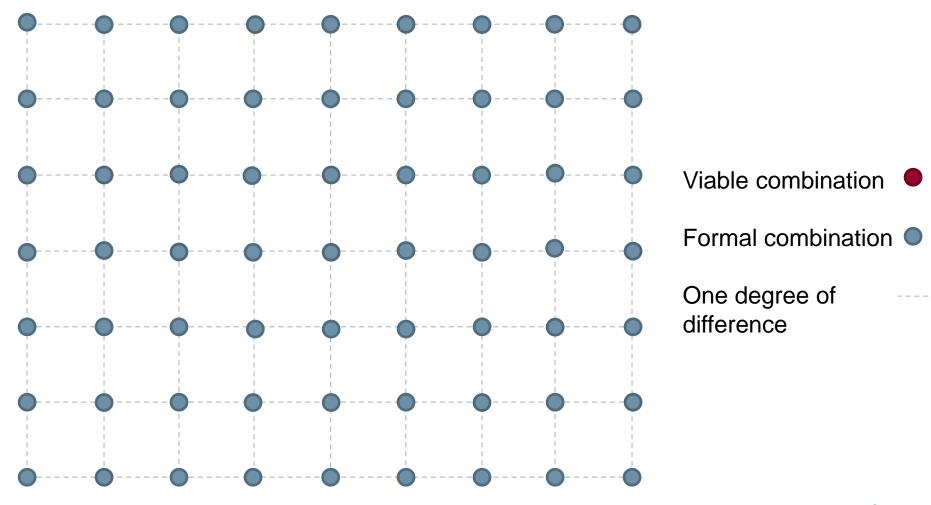
SERAPH

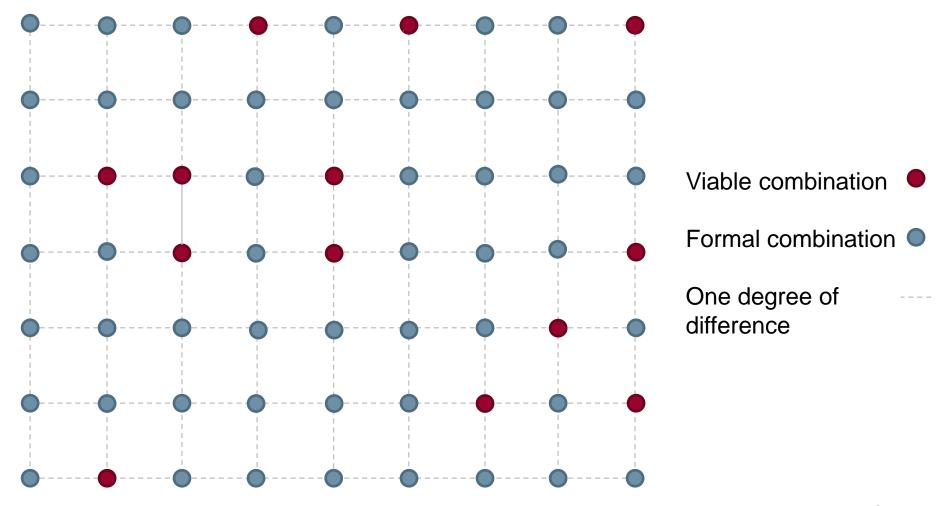


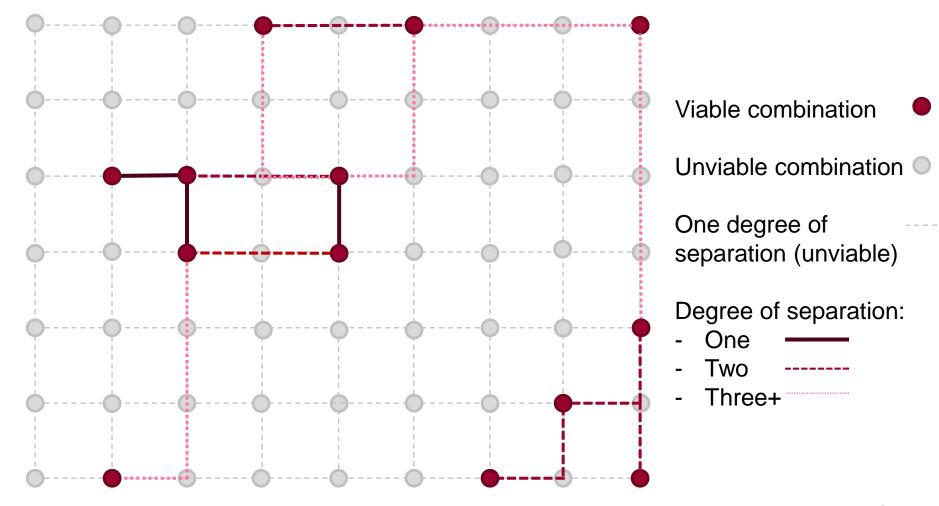
Stakeholder Confidence Indicator

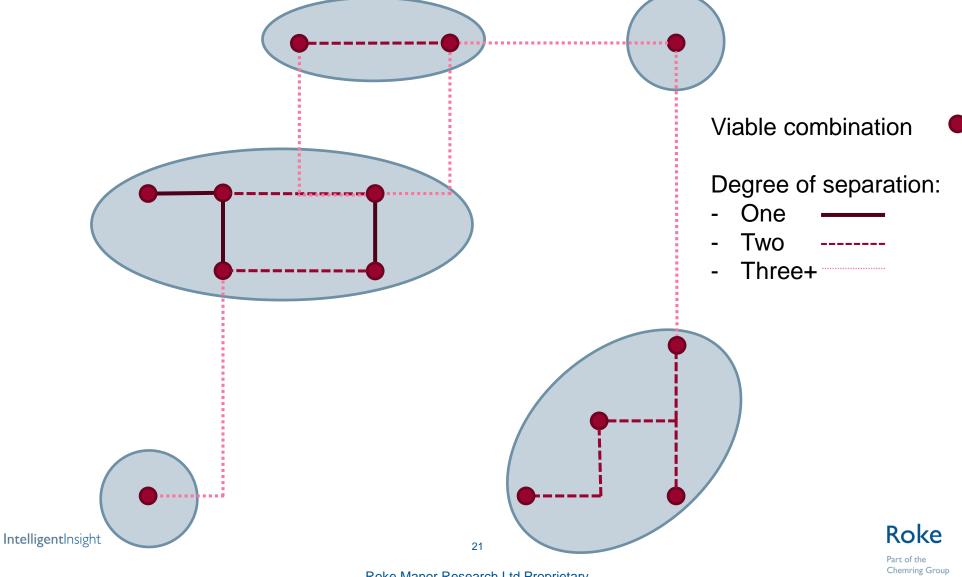
		Broad relationship							
		Consistent	Inconsistent						
Confidence	High	С-Н	IC-H						
given	Medium	C-M	IC-M						
evidence	Low	C-L	IC-L						

- *T* set of pair-wise relationship types in combination
- w_t weighting of pair-wise relationship type
- $J = \frac{1}{2}(N-1)N$ number of unique pair-wise relationships given N parameters
- c_j classification of jth relationship in combination c
- Stakeholder confidence achieved: $S_{achieved} = \frac{1}{\sum_{achieved} 1}$




Stakeholder Confidence Indicator


Accept C-M and above gives 2526 viable combinations (options).


Combination Number	Platform	Mission Range (nm)	Sensor Type	Target Type	Crewing	Data Processing	Training of operators	Tactical Requirement	Viable Indicator	Number relationships C - H	Number relationships C - M	Stakeholder Confidence Achieved
5403	Small Jet	up to 1000	EO	People	5-8 crew	Onboard	The Operators will need to attend a short uplift course.	Routine Reconaissance with full local support	TRUE	28	0	100%
5409	Small Jet	1000-2000	EO	People	5-8 crew	Onboard	The Operators will need to attend a short uplift course.	Routine Reconnaissance with full local support	TRUE	28	0	100%
40296	Large UAV	>3000	GMTI	Maritime	0	Ground based	The Operators will need to attend a completely new Operator course.	Covert Operation	TRUE	27	1	97%
4993	Small TurboProp	up to 1000	IR	People	2-4 crew	Onboard	The Operators will need to attend a short uplift course.	Routine Reconnaissance with full local support	TRUE	26	2	93%
40449	Small Jet	1000-2000	EO	Building	2-4 crew	Ground based	The Operators will need to attend a completely new Operator course.	Covert Operation	TRUE	25	3	89%
4614	Large UAV	up to 1000	IR	People	0	Onboard	The Operators will need to attend a short uplift course.	Routine Reconnaissance with full local support	TRUE	24	4	86%
40283	Small UAV	1000-2000	GMTI	Maritime	0	Ground based	The Operators will need to attend a completely new Operator course.	Covert Operation	TRUE	23	5	82%
6542	Large Turboprop	2000-3000	IR	People	2-4 crew	Mixed	The Operators will need to attend a short uplift course.	Routine Reconnaissance with full local support	TRUE	22	6	79%

Roke
Part of the
Chemring Grou

Using SERAPH in the Defence Domain

IntelligentInsight www.roke.co.uk

Using SERAPH in the Defence Domain

- Applying GMA to a set of wicked problems within the Defence Analysis and Advice space.
- Defence enabler project:
 - Communications architectures considered as part of the wider procurement and implementation process.
 - Served to structure the thinking into combining independent building blocks to build solutions in an iterative process.
 - Use of the tool has allowed the project to demonstrate that all possible options have been unbiasedly considered before down-selecting.
 - Provided an auditable evidence base.
 - Significant potential for use in the policy analysis space.

Summary

Intelligent Insight www.roke.co.uk

Summary

- We have taken a robust and proven process and developed it to include:
 - Stakeholder degree of confidence;
 - Clustering to find representative solutions that can be subjected to more detailed analysis.
- Motivated by how to "visualise" the solution space.
- Developments possible due to advances in modern computing.
- SERAPH represents a unique capability within the UK defence domain.
- Moving forwards:
 - Network analysis of combinations using L0 norm;
 - Working with The University of Southampton to develop the clustering algorithm;
 - D3 visualisation of viable combinations post clustering.

Questions?

Intelligent Insight www.roke.co.uk

Wicked Problems

- Free for All (1967). Wicked Problems. Management Science 14 (4): B-141-B-146.
- Rittel, Horst W.J. and Webber, Melvin M. (1973). Dilemmas in a General Theory of Planning. *Policy Sciences* **4** (2): 55-169.
 - There is no definitive formulation of the problem
 - The problem is essentially novel and unique
 - There is no stopping rule
 - Every solution is a 'one-shot operation'
 - Solutions are either good or bad (no right or wrong)
- Ritchey, Tom (2011). Wicked Problems Social Messes: Decision Support Modelling with Morphological Analysis. Vol 17. Springer Science & Business Media.
 - Wicked problems are all about people as Stakeholders.

