2017 International Symposium on Military Operational Research

Strategic Risk Framework

Project Background

Study Objective

Requires a thorough review, evaluation and implementation of the Strategic Risk Framework (SRF), in context of the UK's assessment of cyber risk mitigation measures.

- Work Package 1a Understand the SRF Theory
 - Reviewing and testing the theory underpinning the SRF
- Work Package 1b Trial the application of the SRF to cyber risks Practice
 - Initial trial and assessment of its applicability to the proposed use;
- Work Package 2 Evaluate the framework for HMG Pre-Deployment
 - Practical trialling of the SRF methodology, evaluation and adaptation
- Work Package 3 Development of a SRF analysis tool Deployment
 - Development of a prototype analysis tool to enable testing/implementation by end users

Study Objective

Study Objective

The SRF

- SRF differs from risk matrix methodologies
- Rather than high impact/high likelihood risks, uses bowtie analysis to examine all risk pathways (threats-consequences)
- Allows evaluation of how much countermeasures reduce risk across all threat scenarios

Source: Nunes-Vaz, Lord & Bilusich 2014

Traditional Risk Assessment

 Rather than look at the entirety of cyber risk or complete risk events, the SRF looks at components of individual risk events – breaking down the judgements associated with risks.

Traditional Risk Assessment

 Rather than look at the entirety of cyber risk or complete risk events, the SRF looks at components of individual risk events – breaking down the judgements associated with risks.

The SRF Risk Pathways

 Develops a risk pathway for each risk event and makes judgements for each node on the pathway. The nodes take different forms.

Generators

 Generators mark the beginning of the risk pathway and determine the number of potential risk events entering a pathway.

Generator

Sorters

• Sorters determine the proportion of potential risk events that progress to the next stage of the risk pathway.

Terminators

Terminators represent the manifestation of the risk event, or some

outcome associated with the risk pathway.

Risk Reduction Activities (RRAs)

Once judgements are made about the risk pathway under 'baseline'

conditions, the effect of RRAs can be considered.

Considering Multiple Pathways

 Many risk pathways can be assessed together, considering the impact of many RRAs – this becomes conceptually and computationally complex.

Overburdening the Analyst

Analytical judgement underpins the SRF, presenting too many pathways or pathways that are too long will overburden analysts.

Analytical Questions

- 1. How many potential risk events (attacks per year)?
- 2. What proportion will progress to the next step of the risk pathway?
- 3. What impacts will an actual risk event have (measured using scales)?

Analytical Questions

- 1. How many potential risk events (attacks per year)?
- 2. What proportion will progress to the next step of the risk pathway?
- 3. What impacts will an actual risk event have (measured using scales)?
- 4. What difference will the RRAs make (consider different possible worlds)?

Analytical Uncertainty

- Each analytical judgement carries some level of uncertainty depending on the availability of data, expertise and intelligence.
- This uncertainty is captured by using multiple analysts for judgements, using three point estimates (best guess, minimum and maximum) and developing appropriate distributions for the values associated with a node.
- The software developed in the project allows this uncertainty to be factored in as it runs simulations of possible outcomes (with and without different RRAs applied). It will support a number of analytical functions:
 - Risk pathway building/model construction
 - Model calculation and simulation
 - Results visualisation and analysis

Software Tool

Software Tool

SRF Evaluation Conclusions

Pros	Cons
Explicitly exposes assumptions	A significant cognitive burden
Provides standard method	Needs to be learnt
Helps to identify info gaps	Gaps in available data
Allows qualitative exploration	Results may be misinterpreted
Theoretically sound	Adaptations to method required
Could be managed in trial	Further resource would improve

Further Applications

Source: Manchester Evening News

References

- Nunes-Vaz, R., Lord, S. and Bilusich, D. (2014) From Strategic Security Risks to National Capability Priorities. Kingston ACT: Security Challenges
- Rowe, C., Zadeh, S.Z., Garanovich, I., Jiang, L., Bilusich, D., Nunes-Vaz, R. and Ween, A. (2017) *Prioritising Investment in Military Cyber Capability Using Risk Analysis*. Submitted to: Journal of Defense Modeling & Simulation: Applications, Methodology, Technology (JDMS), Special Issue: Cyber Modeling and Simulation
- Tate, J. and Jeffrey, C. (2016) Developing an integrated approach to the analysis of MOD cyber-related risks. ISMOR Proceedings 2016

Questions/Discussion

