

An uncertainty based approach to modelling risks using the CBR Risk Model (CRiM)

Stephen Jarrett-Sprague (Dstl), Harriette Taylor (Dstl), Patrick Dooley (DRDC), Chris Pitsaris (DST Group), Matthew Testolin (DST Group)

Chemical, Biological and Radiological Division, Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ

Summary

- To support the management and mitigation of CBRN risks to deployed military forces, Dstl (UK), DST Group (Australia) and DRDC (Canada) have produced a CBR Risk Model (CRiM) that examines the impact and likelihood associated with a range of CBR vignettes.
- Using Monte Carlo simulation, CRiM determines the likelihood, impact, and risk of CBR events at a Seaport of Disembarkation (SPOD). CRiM has been used to assess 20 vignettes to demonstrate the method, with output presented to senior decision-makers using innovative heatmap visualisations.
- Results have so far shown that each nation holds similar beliefs on CBR likelihood and, despite different in-service capabilities, nations have the same top six impacts and risks.

Approach

Likelihood assessments of 20 vignettes were conducted in each nation using 57 subject matter experts (SMEs) from 3 communities (Intelligence; Science and Technology; and Military). A total of 90 pairwise comparisons were completed by each individual. Data was corrected for consistency and combined to give a likelihood with uncertainty for each vignette.

Impact assessments were made for each vignette. CRiM was used to conduct a Monte Carlo simulation for each vignette over a variety of scenarios giving a range of impacts, from the best case scenario to the worst case scenario. Impact was measured in US \$.

Risk assessments were created by combining Impact and likelihood assessments for each vignette. Using rules derived from SME judgement each vignette's probability of operational failure was calculated.

International Partners

Defence Research and Recherche et développement Development Canada pour la défense Canada

Australian Government

Department of Defence
Science and Technology

Results

Each nation holds similar beliefs on CBR likelihood and, despite different inservice capabilities, nations have the same top six impacts and risks.

Figure 4: Example heatmap output for risk

The ordering of risk differs to that for impact and likelihood, for example events with a high likelihood may have a low impact, and therefore be a middle order risk.

Figure 5: Ordering vignettes by likelihood, impact and risk

Impact and Exploitation

- Developed heatmaps that provide an effective way for decision-makers to visualise uncertainty.
- Produced risk analysis that will be used to support decision-making on capability development and procurement.
- Method will allow comparison of current and future capability
- Methodology is adaptable for other domains.