17 July 2018

Measuring the Value of Future Research

David Bangert

Brennan's Monorail

What might have been?

The winners are obvious now....but weren't then

Late 19th century shipping

The nuclear age

Failed military technologies (a small selection)

USS Macon, flying aircraft carrier

Gyro jet rocket propelled bullets

Bell rocket pack

RAH-66 Comanche Stealth Helo.

The Death Ray of the 1930s

Research Studies

- Dstl are running a programme called Emerging Technologies for Defence (ETD), which is designed to assess potential technologies and recommend action
- Polaris Consulting Limited (Polaris) were commissioned to determine if a Cost-Benefit Analysis (CBA) approach would be a useful adjunct to this process – formerly called DAACR (Defence Agility, Adaptability and Cost Reduction) process
- Arke Limited were also commissioned to conduct a parallel study into CBA, as the problem was seen as very challenging
- Both studies have now reported; this paper discusses Polaris' findings but both have provided valuable insights to Dstl, and further joint work between Polaris and Arke is now planned
- This paper cannot discuss the actual technologies assessed and instead discusses an illustrative (eg not real) example
- Thanks are extended to Dstl, who funded the study which underpins this paper

This is not an easy problem to tackle

- The method must be flexible enough to deal with technologies which may:
 - be mature in a few years, or out to 2045,
 - range from scientifically unproven to very mature (TRL 1 to TRL 9),
 - replace or augment current systems, or represent a revolution in military affairs,
 - be new systems, platforms, software, materials or approaches to integration,
 - be very limited in their military application, or pervasive.
- Most technologies will be developed in civil markets and then adopted by the military, although some may be developed purely for military use
- Dozens, or hundreds, of candidate technologies may be considered in a single year
- The key is not to pick 'winners' but to recommend practical action for the MOD
- Cost matters: a technology must provide a positive cost-benefit or an effectiveness able to justify its cost

An illustrative example

 A semi-autonomous battlefield platform capable of operating in adverse conditions, building on advances in robotics and machine intelligence, fielded in 2030-40

Asimo robot, Image Credit: Poppy, CC BY-SA 3.0

Scale, scope and characteristic of a technology

1. Definition of the Technology

- Is it scientifically possible?
- Is it plausible that the technology will be developed?
- What is its TRL?
- Will it be developed through civil applications and then applied to defence?
- Where will it be developed globally, in the West, elsewhere?
- What are the likely costs of its development in the civil domain?
- What evidence exists regarding the development of the technology?

Making a technology work is only part of the problem

A new technology *must* be scientifically possible and achievable in terms of engineering o

2. Barriers, opportunities and context

- But it *must* also be:
 - Acceptable to society

- Legal (
- Affordable ?
- Cost-effective ?
- Able to use current infrastructure, or operate with little infrastructure, or be very affordable
- Secure for military use ?
- Not overtaken by rival technologies ?

3. Military Use Cases

- Many new technologies have so many applications that it is difficult to get a handle on them
- Therefore, specific use cases must be selected for evaluation
- For this concept, three use cases may be defined:
 - Defence Explosive Ordnance Disposal (DEODS) is a vital capability for Defence. Semi-autonomous robots could REPLACE many of the current EOD vehicles.
 - Evacuation of Casualties could be improved through the use of semiautonomous robots.
 - Operation in extreme environments could be greatly improved through their use.
- These cases are deliberately conservative and avoid the issues of legality and safety

4. Financial benefits and costs

- The Whole Life Cost (WLC) of the technology must be estimated:
 - For the military use cases under consideration
 - Across research, development, manufacture and deployment in-service
 - Against a baseline of the current way the use cases are delivered (unless the technology provides a new capability)
- The baseline cost is calculated
- The costs of the new technology are estimated parametrically
- The (financial) benefits of the new technology are estimated against the baseline, across all the Defence Lines of Development (DLoDs), such as:
 - Personnel
 - Logistics
 - Equipment

Although effectiveness matters as well

5. Operational Effectiveness

Military Function	Score (Use Case/General)	Comment
Close Combat		Illegal and unacceptable to society
CBRN Defence	2/2	Potential issues with illegality
Explosive Ordnance Disposal	2/8	Could greatly enhance current EOD operations
Cyber Operations & Cyber Situational Awareness	(V)	May offer opportunities for enemy action
Intelligence & Situational Awareness		
Presence, Influence, Coercion, Deterrence & Diplomacy		
Medical & Personnel Evacuation and Recovery	2/2	Potential to make personnel evacuation safer
Logistic Support, Lift & Refuelling	-/2	Potential to improve current operations
Equipment Recovery & Repair	-/2	Potential to improve current operations
Public Order		
Humanitarian Assistance & Disaster Relief		
Operating in extreme environments	2/8	Improvements in limited use cases; with great potential for exploitation
Total	8/24	

6. CBA and CEA

- Cost Benefit Analysis (CBA) is a financial valuation of the WLC of a technology for the selected use cases
- Cost Effectiveness Analysis (CEA) is a comparison of the WLC with the change in Operational Effectiveness (OE) of the selected use cases
- Both are valid and complementary approaches to understanding the value of a technology
- It is also important to understand the 'extensibility' of a technology beyond the use cases
- It is equally important to understand the impact of legal and societal realities on the 'extensibility'

Dashboard

COST-BENEFIT

Costs: adaption for military use to cost

£1-10Bns

Production Costs: £100m - £1Bn Support costs over 20 years: £100m -

£1Bn

WLC: £100m - £1Bn

Financial benefits: savings of **£100m-1Bn** (arising from a reduction in vehicle numbers and personnel costs)

Cost-benefit: neutral

OPERATIONAL EFFECTIVENESS IMPACT

Use Cases: transitional impact on DEODS, casualty evacuation and operating in extreme environments (total score 8)

Extended: transformational impact on non-combat operations (total

score 24)

Vulnerabilities: in Cyber

7. Dashboard

USE CASE(S)

Defence Explosive Ordnance Disposal (DEODS) is a vital capability for Defence. Semi-autonomous robots could **REPLACE** many of the current EOD vehicles.

Evacuation of Casualties could be improved through the use of semi-autonomous robots.

Operation in extreme environments could be greatly improved through their use.

MILITARISATION

The key cost drivers for militarising are:

- Ruggedisation
- Electronic countermeasures
- Cryptography
- Communication links

7. Dashboard (Continued)

COEIA **MODERATE CONFIDENCE Increased Effectiveness NEUTRAL COST-BENEFIT INCREASED OE Decreased Cost Increased Cost VERY HIGH POTENTIAL Decreased Effectiveness PROPOSED ACTION(S):** •INTERVENE THROUGH DASA MARKET ASSESSMENT

So what?

- To support a decision on future investment, such as:
 - Technology Watch
 - DASA call(s)
 - Market analysis
 - Directed funding
- Can we build it? Do we want to? What are the alternatives? What are its vulnerabilities?