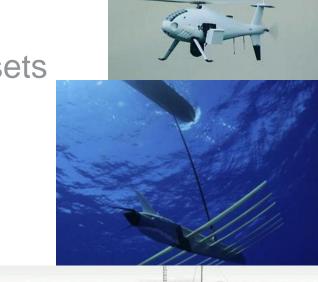

Overview

- Problem:
 - Revolution in ISTAR
 - Ever increasing number of sensor assets
 - Traditional techniques struggle analysing data from such wide range of sensors
- Solution, NSC ISTAR tracker:
 - Novel technique for analysis of multi-sensor detection data infer distinct entities and their most likely tracks
 - Robust handling congested areas where the detection interval is sparse
 - Probabilistic approach dealing with uncertainty
 - Demonstrate successful implementation in a toolset
- Applications:
 - New technique opens up radar tracking methods to new domains


NSC

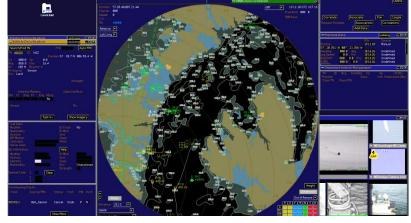
- Dr Stephen Lucek
- NSC SME with a strong record in development complex mathematical software
- NSC modelling and simulation lead for ASC

Context

- Revolution in ISTAR domain
- Ever increasing number of sensor assets used in support of UK and Allied military forces
- UXVs in infancy and have yet to be deployed in an integrated fashion
- To make sense of all the data gathered is a significant challenge
- Amalgamation of data to create a coherent picture is difficult
 - From a wide range of assets
 - With significant variations in sensor characteristics

Unmanned Warrior 2016

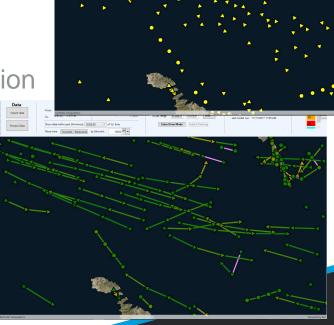
- Maritime exercise,
- 50 different systems
 - underwater
 - surface
 - air


- Over six weeks of unmanned activity off the coasts of West Wales and the Scottish Outer Hebrides
- Showed the potential off-board sensors can bring to force-wide situational awareness

training • simulation • consultancy

Unmanned Warrior 2016

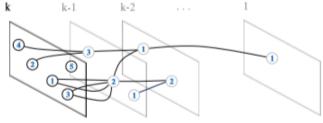
- Unmanned Warrior 2016 demonstrated the difficulty of analysing the data from disparate sensors
- Off-board sensors detections characterised by:
 - Intermittency
 - limited field of views,
 - high host mobility,
 - Some cases, errors
 - e.g. poor triangulation

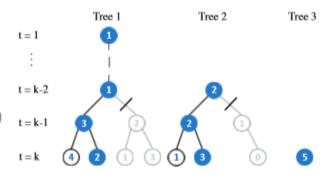

 A lot of detection data was lost because it couldn't be turned into tracks by current tracking algorithms

Novel Solution: ISTAR tracker

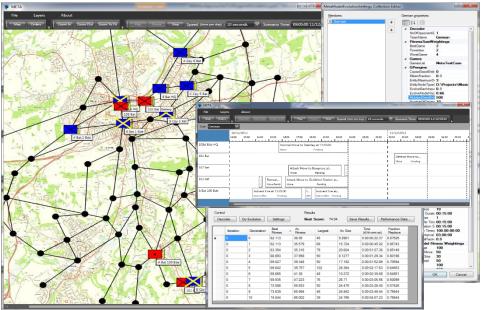
Probabilistic approach turning disparate individual

detections into easy to read continuous tracks


- Global solution,
 - Best fit to the whole picture
 - Considers all the available information
- Balances conflicting indicators
- Deals with uncertainty
- Supplies a confidence of that fit
- Robust algorithms
 - handle congested areas
 - sparse detection intervals

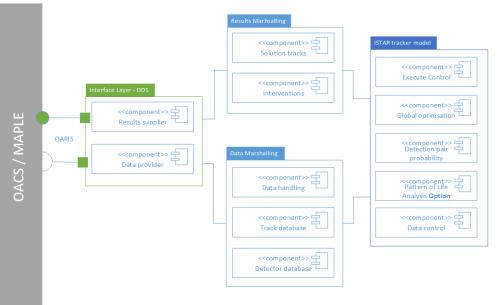


Multiple Hypothesis Tracker

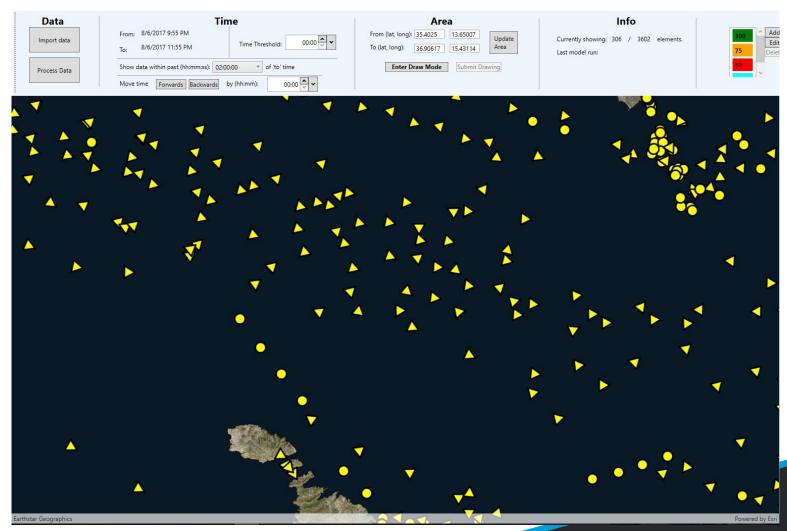

- Standard radar tracking technique
- Each radar update:
 - Every possible track is updated with every new update
- Over time, the track branches into many possible directions.
- MHT calculates the probability of each potential track. Only reports the most probable tracks
- Can work well in radar scenarios, but algorithms do not scale well to larger problem data sets
 - e.g. going from one to many sensors

Simulated Annealing

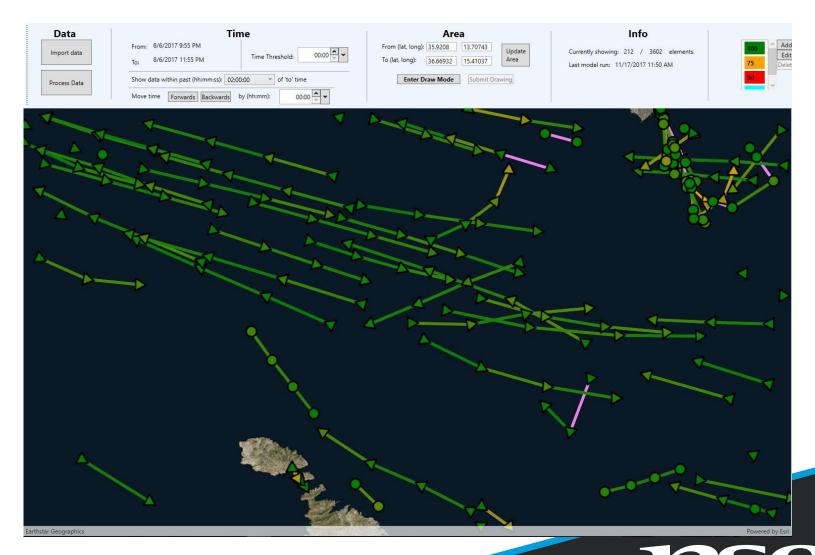
- Global optimiser
- Probabilistic approach
 - Similar to SA
- Good at scaling to solve big problems



- NSC experience in "generic problem" SA
 - Artificial intelligence applied to solving tactical problems in wargame simulations
- Does not need fine tuning to specifics of problem

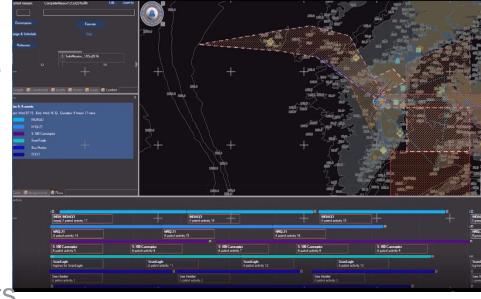

NSC ISTAR tracker toolset

- Built model & GUIs
- Representative data sets:
 - AIS/ADSB
 - Removed identifiers
 - used for model validation
 - Congested areas
 - Sparse detections
 - Thin detections in time (e.g. only report at ½ hourly intervals)
- Use open architecture
 - Facilitate incorporation into C2 systems
- Graphical User Interface
 - Displays routes and certainty
 - Allows interrogation of model results
 - Understand how it is working



Tool screenshot - Detections

Tool screen shot - Results



Results

- Correctly identified routes in green
 - shaded by certainty
- Misidentifications in purple
- 98% accuracy on trial data,
 - exact accuracy values will depend on the sparsity and congestion of the data considered, and so are difficult to quantify
- Quick ~ 1s on standard i7 laptop for previous example

New technique

- Opens up radar tracking methods to new domains
- Probabilistic approach handles uncertainty & other information feeds in wide variety of contexts

- Not constrained on detection information for velocities / courses
 - Can be calculated from routes as they are generated
- Probabilities from any source, not just time and space calculation
 - Textural analysis
 - Pattern of life analysis
- Take feeds from (and be used in conjunction with) other tracking techniques
 - e.g. Real-Time Multi-Modal Person Tracking for CCTV

Applications

Initial development focus on maritime domain, but

 Tool useful in any context where tracking entities (People/Vessels/Vehicle/Aircraft) from multiple detection feeds

- Increasing fidelity of situational awareness
- Reducing operator workload
- Ships Ops room, MIFC, NMIC
- Brigade or Divisional HQ
- Joint level: fusing information from existing systems to generate a genuine common operating picture
- CCTV control Room
- Particularly useful in land domain
 - more congested & more sensors

