

Airport Landside Security Screening Modelling

James Adamson¹, Ian Griffiths¹, Marc Escandell¹, Rachel Purkess², Christopher Holt³

24 July 2019

¹ decisionLab, ² BAE Systems CORDA, ³ Dstl

BAE SYSTEMS

decision Lob smart models from creative thinkers

Requirement

- Develop understanding and evaluate potential security screening systems in landside area of airport terminal
- Screening systems include

Handheld sensors

Moving sensors

Stand-off sensors

Aims of This Work

Demonstrate that modelling can support the requirements

Aims of This Work

- Demonstrate that modelling can support the requirements
- Demonstrate that modern modelling methods overcome limitations of traditional methods, as they handle interacting entities, e.g. people, sensors, and the complexity these interactions produce

Discrete Event Simulation

Agent Based Modelling

Scenario

Example terminal

Heathrow Terminal 5 Departures

Typical day

~26,800 travellers pass through Departures

Arrival modes

Traveller arrival modelled to match

Arrival modes

Routes into terminal

OFFICIAL

Outgoing flights

Model: Base

Model: Portal

Model: Portal + ETD

Model: Roaming Dog

Model: Stand-off Sensor

STANDOFF SENSOR

Shielding calculations depending on sensor and passenger heights

OFFICIAL

Metrics

- Screening effectiveness
 - % passengers screened
- Inconvenience
 - Median increase in time taken (point of entry through to security)
 - Queue lengths forming at security points

Model Components

Model: Combined

Experiments

- Screening scenarios
 - 1. No screening
 - 2. Portal
 - 3. Portal & ETD
- Investigated
 - Passenger numbers
 - Numbers targeted for screening
 - Characteristics of screening measures
- Metrics captured included screening coverage and passenger inconvenience results – we present the latter
- 8 repeats carried out for each experiment case
- Model to be validated preliminary results to show capability

- Portal & dog on bridge
- 5. Standoff on bridge
- 6. Dog in concourse

7. Standoff in concourse

Effect Of Passenger Load

ASC0121/004/O1/1.2

OFFICIAL © 2019 decisionLab LTD

Portal Placed on Link Bridge

Effect of proportion passengers selected for screening

		Average queue length	Maximum queue length
Proportion selected	10%	0.15	3
	20%	0.41	29
	30%	2	169
	40%	9.58	1,192
	50%	3.04	198

High variability in 40% & 50% cases – requires more runs to get stable results

Portal With Etd On Link Bridge

Impact of ETD screening time

		Average queue length	Maximum queue length
ETD screening time (relative to default)	60%	1.17	154
	80%	1.23	56
	100%	14.24	681
	120%	85.39	1,281
	140%	126.1	1,589

Stand-off Sensor

Benefit of simultaneous screening for stand-off sensors – shown relative to one-by-one screening

Summary

- Developed a proof-of-principle model
 - Focused on LHR Terminal 5
- Carried out example study to demonstrate capability and usefulness
 - Although assumptions and model need to be reviewed, has provided some key findings of potential interest