

DIEManalytics

FUEL ENDURANCE PLANNING ENGINE (FENPLE)

ISMOR'19 26th July 2019

BLUF

What are we trying to do?

Develop a proof of concept expert system to predict realistic fuel consumption for RN units based on a range of factors

What is new in our approach?

- We will exploit data from a number of sources to conduct trend analysis, taking into account all related factors
- The expert system will take into account the fact that this is not an exact science

What difference could it make?

- Operational efficiencies: Increased accuracy in planning and understanding of drivers to inform Replenishment at Sea planning. Evidence behind fuel reduction targets
- Strategic efficiencies: With more accurate fuel consumption predictions, the requirement for fuel storage (Operational Fuel Depots) could be better defined and deliver evidence for strategic decision-making
- Strategic support: To provide accurate predictions to use in future requirements analysis. WAVE tanker OSD ~2030

Outline

Background

History

Task

Approach

Solution

Data analysis

Expert System

Challenge

Current practice

Current limitations

Benefits

Operational efficiencies

Strategic efficiencies

Strategic support

Background | History

Background | Task

- The ASC260 Defence Efficiencies project aims to deliver either cost savings or more efficient use of resources
- One area which was highlighted at the ASC Supplier day was fuel planning
- We had previous experience of...

Background | Approach

Solution | Data analysis

- Trend analysis per class of ship taking into account
 - Detailed consumption profiles
 - Contribution of each factor
 - Driving factors
 - Fuel consumption per day
 - High level tasking
 - Detailed operational tasking when deployed
 - Quality of fuel
 - Location data and any corresponding environmental data
 - Maintenance data i.e. time since last hull clean
- Variation analysis of platforms within each

Solution | Expert System

- Benefits of a fuzzy approach
 - It can deal with imprecise problems
 - It represents natural language descriptions of the situation
 - It allows the planner to easily carry out 'what if' analysis

Inputs

- Definition of fuzzy sets based on SME language
- Consumption profiles and

Rulesets

- Driven by the results of the analysis
- Class specific and based on the drivers of consumption

Outputs

A crisp output figure to use for operational and strategic planning

Challenge | Current practice

Operational Planning/Strategic support

- 15kt consumption rate is used as a baseline planning figure
 - The rate will have been recorded when the class entered service
 - It will not get updated routinely
- Where higher or lower periods of consumption are known, these will be added to the plan
 - 17kt rate for higher periods
 - 12kt or 'alongside' rate for lower periods

Strategic Planning

- The total amount of fuel consumed during a deployment will be known
 - The next ship doing the same deployment (if of the same class) will be assumed to use the same amount of fuel
 - A factor may be applied for time of year to taken into account the impact of temperature on consumption rates

Challenge | Current limitations

- Using an average figure over a 6-month period, with assumptions based on a previous ship conducting the same tasking or the same ship but under different conditions, does not provide an accurate prediction of fuel consumption
- In higher sea temperatures, is it a linear relationship with the speed that the vessel is operating at or is to right to apply an arbitrary figure?
- Without accurate consumption predictions, strategic assets such as tankers and strategic stocks held ashore cannot be optimised
- Without an accurate prediction of how much fuel a ship may use, imposing fuel reduction targets on units is unrealistic
- With reduction targets not having clear evidence, they are largely ignored

Benefits | Operational efficiencies

Scenario 1: The RN needs to meet targets to reduce fuel consumption. They reduce a ship's annual allocation by 10%

Challenges

- What is the 10% based on? Is there any evidence for it?
- Is it achievable?
- What happens if a ship doesn't meet the target?
- What is the incentive for a Commander? They have a job to do

How FENPLE helps

- If reducing consumption = increased endurance, it has an impact on operational freedom. That incentivises Comds.
- Consumption will only be reduced if the drivers are fully understood
- Evidence is key realistic, achievable goals with justification behind them is the only way targets will be met

Benefits | Strategic efficiencies

Scenario 2: Operational fuel depots require constant investment to maintain. There is a limited budget – how should it be spent?

Challenges

- The depots have different capacities and are in locations in the UK and overseas. Understanding where and when fuel will be needed is key to informing investment decisions
- These are long term strategic decisions, high level requirements are needed over a long period of time

How FENPLE helps

 Strategic planners can predict the volume of fuel required in the UK/Overseas each year, rather than increasing/decreasing last year's consumption by an arbitrary amount

Benefits | Strategic support

~10 vears.

Scenario 3: The WAVE tankers go out of service in ~ 10 years. What do we need to replace them with?

Challenges:

- Strong evidence is required before procuring a new platform.
 Current fuel planning is based largely on consumption rates recorded when platforms first came into service, which do not match the reality
- The tankers will need to support the RN for 20-30 years, the consumption drivers to predict fuel requirements over that time scale do not exist

How FENPLE helps:

 Realistic predictions for today and in the future will contribute to providing evidence to procure a capability which meets the RN's needs

DIEManalytics

FUEL ENDURANCE PLANNING ENGINE (FENPLE)

ISMOR'19 26th July 2019